sigfur {RankAggSIgFUR} | R Documentation |
SIgFUR
Description
SIgFUR applies Seed-Based Iteration, Greedy Algorithm,
and FUR in sequence for each element of subit_len_list_sbi
. The
mean seed ranking is used as the input to Seed-Based Iteration.
The best of all output rankings from FUR is considered as the consensus
ranking.
Usage
sigfur(
input_rkgs,
subit_len_list_sbi,
omega_sbi,
subit_len_list_fur,
search_radius,
objNames = c(),
wt = c()
)
Arguments
input_rkgs |
a |
subit_len_list_sbi |
a vector containing positive integer(s) for the subiteration lengths to Seed-Based Iteration. Recommended values are between 2 and 8. Smaller subiteration lengths result in shorter run-time. |
omega_sbi |
a positive integer for the number of repetitions of perturbing
the seed ranking in Seed-Based Iteration. An |
subit_len_list_fur |
a vector containing positive integer(s) for the subiteration lengths to FUR. |
search_radius |
a positive integer for the maximum change in the rank of each
object in the Greedy Algorithm and FUR. The default value
of |
objNames |
a |
wt |
a |
Value
A list containing the consensus ranking (expressed as ordering), total Kemeny distance, and average tau correlation coefficient corresponding to the consensus ranking.
References
Badal, P. S., & Das, A. (2018). Efficient algorithms using subiterative convergence for Kemeny ranking problem. Computers & Operations Research, 98, 198-210. doi:10.1016/j.cor.2018.06.007
See Also
seed_based_iteration
, rap_greedy_alg
, fur
, mean_seed
Examples
## Four input rankings of five objects
input_rkgs <- matrix(c(3, 2, 5, 4, 1, 2, 3, 1, 5, 4, 5, 1, 3, 4, 2, 1, 2, 4, 5, 3),
byrow = FALSE, ncol = 4)
subit_len_list_sbi <- c(2:3)
omega_sbi <- 10
subit_len_list_fur <- c(2:3)
search_radius <- 1
sigfur(input_rkgs, subit_len_list_sbi, omega_sbi, subit_len_list_fur, search_radius)
# Determined the consensus ranking, total Kemeny distance, and average tau correlation coefficient
## Five input rankings with five objects
## 2nd ranking == 3rd ranking, so if a third object is weighted as zero,
## we should get the same answer as the first examples
input_rkgs <- matrix(c(3, 2, 5, 4, 1, 2, 3, 1, 5, 4, 2, 3, 1, 5, 4, 5, 1, 3, 4, 2, 1,
2, 4, 5, 3),byrow = FALSE, ncol = 5)
subit_len_list_sbi <- c(2:3)
omega_sbi <- 10
subit_len_list_fur <- c(2:3)
search_radius <- 1
wt = c(1,1,0,1,1)
sigfur(input_rkgs, subit_len_list_sbi, omega_sbi, subit_len_list_fur, search_radius, wt=wt)
# Determined the consensus ranking, total Kemeny distance, and average tau correlation coefficient
## Using five input rankings with five objects with prepare_data to
## automatically prepare the weight vector
input_rkgs <- matrix(c(3, 2, 5, 4, 1, 2, 3, 1, 5, 4, 2, 3, 1, 5, 4, 5, 1, 3, 4, 2, 1,
2, 4, 5, 3),byrow = FALSE, ncol = 5)
out = prepare_data(input_rkgs)
input_rkgs = out$input_rkgs
wt = out$wt
subit_len_list_sbi <- c(2:3)
omega_sbi <- 10
subit_len_list_fur <- c(2:3)
search_radius <- 1
sigfur(input_rkgs, subit_len_list_sbi, omega_sbi, subit_len_list_fur, search_radius, wt=wt)
# Determined the consensus ranking, total Kemeny distance, and average tau correlation coefficient
## Included dataset of 15 input rankings of 50 objects
data(data50x15)
input_rkgs <- as.matrix(data50x15[, -1])
subit_len_list_sbi <- c(3)
omega_sbi <- 5
subit_len_list_fur <- c(2:3)
search_radius <- 1
sigfur(input_rkgs, subit_len_list_sbi, omega_sbi, subit_len_list_fur, search_radius)