prepare_data {RankAggSIgFUR} | R Documentation |
Preparing Data
Description
Prepares the given data for rank aggregation functions. The function
returns a matrix of input rankings and a vector indicating weights of the
ranking for each judge. Useful when scores need to be converted to rankings.
Also helpful in reducing the size of the problem for large p
, especially
when p
> n
!.
Usage
prepare_data(df, HighertheBetter = 0)
Arguments
df |
a |
HighertheBetter |
an integer with 1 indicating that the higher values in the input correspond to the better rank. An optional parameter. Default value is 0, i.e., the lower the score the better the rank (e.g., score of 1 is the topmost rank). |
Value
A list containing a matrix of input rankings (named input_rkgs
) and a
weight vector corresponding to weights for each judge (named wt
). These
two objects are used as inputs to subit_convergence
,
rap_greedy_alg
, fur
, and sigfur
.
See Also
subit_convergence
, rap_greedy_alg
, fur
, sigfur
Examples
## Five input rankings with five objects
input_rkgs <- matrix(c(3, 2, 5, 4, 1, 2, 3, 1, 5, 4, 2, 3, 1, 5, 4, 5, 1, 3, 4, 2, 1,
2, 4, 5, 3),byrow = FALSE, ncol = 5)
out = prepare_data(input_rkgs)
input_rkgs = out$input_rkgs
wt = out$wt
## Five input rankings with five objects
## testing the higher the better
input_rkgs <- matrix(c(3, 2, 5, 4, 1, 2, 3, 1, 5, 4, 2, 3, 1, 5, 4, 5, 1, 3, 4, 2, 1,
2, 4, 5, 3),byrow = FALSE, ncol = 5)
input_rkgs = input_rkgs*2+input_rkgs #artificially create a score matrix
# Testing the higher the better rank
out = prepare_data(input_rkgs, HighertheBetter = 1)
input_rkgs = out$input_rkgs
wt = out$wt