RaModel {RaSEn} | R Documentation |
Generate data (x, y)
from various models in two papers.
Description
RaModel
generates data from 4 models described in Tian, Y. and Feng, Y., 2021(b) and 8 models described in Tian, Y. and Feng, Y., 2021(a).
Usage
RaModel(model.type, model.no, n, p, p0 = 1/2, sparse = TRUE)
Arguments
model.type |
indicator of the paper covering the model, which can be 'classification' (Tian, Y. and Feng, Y., 2021(b)) or 'screening' (Tian, Y. and Feng, Y., 2021(a)). |
model.no |
model number. It can be 1-4 when |
n |
sample size |
p |
data dimension |
p0 |
marginal probability of class 0. Default = 0.5. Only used when |
sparse |
a logistic object indicating model sparsity. Default = TRUE. Only used when |
Value
x |
n * p matrix. n observations and p features. |
y |
n responses. |
Note
When model.type
= 'classification' and sparse
= TRUE, models 1, 2, 4 require p \ge 5
and model 3 requires
p \ge 50
. When model.type
= 'classification' and sparse
= FALSE, models 1 and 4 require p \ge 50
and
p \ge 30
, respectively. When model.type
= 'screening', models 1, 4, 5 and 7 require p \ge 4
. Models 2 and 8 require p \ge 5
. Model 3 requires p \ge 22
. Model 5 requires p \ge 2
.
References
Tian, Y. and Feng, Y., 2021(a). RaSE: A variable screening framework via random subspace ensembles. Journal of the American Statistical Association, (just-accepted), pp.1-30.
Tian, Y. and Feng, Y., 2021(b). RaSE: Random subspace ensemble classification. Journal of Machine Learning Research, 22(45), pp.1-93.
See Also
Examples
train.data <- RaModel("classification", 1, n = 100, p = 50)
xtrain <- train.data$x
ytrain <- train.data$y
## Not run:
train.data <- RaModel("screening", 2, n = 100, p = 50)
xtrain <- train.data$x
ytrain <- train.data$y
## End(Not run)