Weka_clusterers {RWeka} | R Documentation |
R/Weka Clusterers
Description
R interfaces to Weka clustering algorithms.
Usage
Cobweb(x, control = NULL)
FarthestFirst(x, control = NULL)
SimpleKMeans(x, control = NULL)
XMeans(x, control = NULL)
DBScan(x, control = NULL)
Arguments
x |
an R object with the data to be clustered. |
control |
an object of class |
Details
There is a predict
method for
predicting class ids or memberships from the fitted clusterers.
Cobweb
implements the Cobweb (Fisher, 1987) and Classit
(Gennari et al., 1989) clustering algorithms.
FarthestFirst
provides the “farthest first traversal
algorithm” by Hochbaum and Shmoys, which works as a fast simple
approximate clusterer modeled after simple k
-means.
SimpleKMeans
provides clustering with the k
-means
algorithm.
XMeans
provides k
-means extended by an
“Improve-Structure part” and automatically determines the
number of clusters.
DBScan
provides the “density-based clustering algorithm”
by Ester, Kriegel, Sander, and Xu. Note that noise points are assigned
to NA
.
Value
A list inheriting from class Weka_clusterers
with components
including
clusterer |
a reference (of class
|
class_ids |
a vector of integers indicating the class to which
each training instance is allocated (the results of calling the Weka
|
Note
XMeans
requires Weka package XMeans to be installed.
DBScan
requires Weka package optics_dbScan to be
installed.
References
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD'96), Portland, OR, 226–231. AAAI Press.
D. H. Fisher (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2/2, 139–172. doi:10.1023/A:1022852608280.
J. Gennari, P. Langley, and D. H. Fisher (1989). Models of incremental concept formation. Artificial Intelligence, 40, 11–62.
D. S. Hochbaum and D. B. Shmoys (1985).
A best possible heuristic for the k
-center problem,
Mathematics of Operations Research, 10(2), 180–184.
doi:10.1287/moor.10.2.180.
D. Pelleg and A. W. Moore (2006). X-means: Extending K-means with Efficient Estimation of the Number of Clusters. In: Seventeenth International Conference on Machine Learning, 727–734. Morgan Kaufmann.
I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques. 2nd Edition, Morgan Kaufmann, San Francisco.
Examples
cl1 <- SimpleKMeans(iris[, -5], Weka_control(N = 3))
cl1
table(predict(cl1), iris$Species)
## Not run:
## Requires Weka package 'XMeans' to be installed.
## Use XMeans with a KDTree.
cl2 <- XMeans(iris[, -5],
c("-L", 3, "-H", 7, "-use-kdtree",
"-K", "weka.core.neighboursearch.KDTree -P"))
cl2
table(predict(cl2), iris$Species)
## End(Not run)