| fitRTDE {RTDE} | R Documentation |
Fitting a Tail Dependence model with a Robust Estimator
Description
Fit a Tail Dependence model with a Robust Estimator.
Usage
fitRTDE(obs, nbpoint, alpha, omega, method="MDPDE", fix.arg=list(rho=-1),
boundary.method="log", control=list())
## S3 method for class 'fitRTDE'
print(x, ...)
## S3 method for class 'fitRTDE'
summary(object, ...)
## S3 method for class 'fitRTDE'
plot(x, which=1:2, main, ...)
Arguments
obs |
bivariate numeric dataset. |
nbpoint |
a numeric for the number of largest points to be selected. |
alpha |
a numeric for the power divergence parameter. |
omega |
a numeric for omega, see section Details. |
method |
a character string equals to |
fix.arg |
a named list of fixed arguments:
either |
boundary.method |
a character string: either "log" or "simple", see section Details. |
control |
A list of control paremeters. See section Details. |
x, object |
an R object inheriting from |
... |
arguments to be passed to subsequent methods. |
which |
an integer (1 or 2) to specify whether to plot eta or delta, respectively. |
main |
a main title for the plot. |
Details
The function fitRTDE fits an extended Pareto distribution
(\eta,\tau are fitted while \rho is fixed)
on the relative excess of Z_\omega (see zvalueRTDE)
using a robust estimator based on the minimum distance power
divergence criterion (see MDPD).
The boundary enforcement on \eta,\tau is either done
by the bounded BFGS algorithm (see optim with
method="L-BFGS-B") or by the bounded Nelder-Mead
algorithm (see constrOptim with
method="Nelder-Mead") .
Value
fitRTDE returns an object of class "fitRTDE"
having the following components:
nrownumber of
data.n0rownumber of
contamin.alphaa vector of
alphaparameters.omegaa vector of
omegaparameters.ma vector of
nbpoint.rhoa numeric for
rho.etaestimate of
eta.deltaestimate of
delta.Ztildesee
zvalueRTDE.
Author(s)
Christophe Dutang
References
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
Examples
#####
# (1) simulation
omega <- 1/2
m <- 48
n <- 100
obs <- cbind(rupareto(n), rupareto(n)) + rupareto(n)
#function of m
system.time(
x <- fitRTDE(obs, nbpoint=m:(n-m), 0, 1/2)
)
x
summary(x)
plot(x, which=1)
plot(x, which=2)