MDPD {RTDE} | R Documentation |
The Minimum Distance Power Divergence statistics
Description
Computes the power divergence statistics then used a minimization problem.
Usage
MDPD(theta, densfun, obs, alpha, ..., control=list())
Arguments
theta |
the parameter of the distribution given as a vector. |
densfun |
a function computing the theoretical density function. |
obs |
a numeric vector of observations |
alpha |
a numeric for the power divergence parameter. |
... |
further arguments to be passed to the density function. |
control |
A list of control paremeters. See section Details. |
Details
The Power Divergence for a density function f
and
observations X_1,...,X_n
is defined as
\Delta(f,\alpha) = \int_{R} f^{1+\alpha}(x)dx-\left ( 1+\frac{1}{\alpha} \right )
\frac{1}{n} \sum_{i=1}^n f^\alpha(X_i)
for \alpha> 0
\Delta(f,0) = -\frac{1}{n}\sum_{i=1}^n \log f(X_i)
for \alpha = 0
.
The control
argument is a list that can supply any of the
following components:
eps
a small positive floating-point number used when
integrate
stalled, default to1e-3
.tol
the desired accuracy used in the
integrate
function when computing the power divergence, default to1e-3
.lower
the lower bound of the domain of the density function, default to 1.
upper
the lower bound of the domain of the density function, default to infinity.
Value
MDPD
returns the power divergence against the density function densfun
as a numeric.
Author(s)
Christophe Dutang
References
Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C., (1998). Robust and efficient estimation by minimizing a density power divergence, Biometrika, 85, 549-559.
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
Examples
#####
# (1) small example
omega <- 1/2
m <- 10
n <- 100
obs <- cbind(rupareto(n), rupareto(n)) + rupareto(n)
#unit Pareto transform
z <- zvalueRTDE(obs, omega, nbpoint=m, output="relexcess")
MDPD(c(1/2, 1/4), dEPD, z$Z, alpha=0, rho=-1)