Frechet {RTDE} | R Documentation |
The Frechet Distribution
Description
Density function, distribution function, quantile function, random generation.
Usage
dfrechet(x, shape, xmin, log = FALSE)
pfrechet(q, shape, xmin, lower.tail=TRUE, log.p = FALSE)
qfrechet(p, shape, xmin, lower.tail=TRUE, log.p = FALSE)
rfrechet(n, shape, xmin)
dufrechet(x, log = FALSE)
pufrechet(q, lower.tail=TRUE, log.p = FALSE)
qufrechet(p, lower.tail=TRUE, log.p = FALSE)
rufrechet(n)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape |
shape parameter. |
xmin |
lower bound parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
Details
The Frechet distribution is defined by the following density
f(x) = shape * (x - xmin)^{(-shape-1)} * exp(-(x - xmin)^{(-shape)})
for all x>xmin
.
The unit Frechet distribution corresponds to xmin=0
and
shape=1
.
Value
dfrechet, dufrechet
give the density,
pfrechet, pufrechet
give the distribution function,
qfrechet, qufrechet
give the quantile function, and
rfrechet, rufrechet
generate random deviates.
The length of the result is determined by n
for
rfrechet, rufrechet
, and is the maximum of the lengths of the
numerical parameters for the other functions.
The numerical parameters other than n
are recycled to the
length of the result. Only the first elements of the logical
parameters are used.
Author(s)
Christophe Dutang
References
Kotz, S. and Nadarajah, S. (2000), Extreme Value Distributions: Theory and Applications, Imperial College Press.
Beirlant, J., Goegebeur, Y., Teugels, J., Segers (2004), Statistics of Extremes: Theory and Applications, John Wiley and Sons.
Examples
#####
# (1) density function
x <- seq(0, 5, length=24)
cbind(x, dfrechet(x, 1/2, 1/4))
#####
# (2) distribution function
cbind(x, pfrechet(x, 1/2, 1/4))