FGM {RTDE} | R Documentation |
The Eyraud Farlie Gumbel Morgenstern Distribution
Description
Density function, distribution function, quantile function, random generation.
Usage
dFGM(u, v, alpha, log = FALSE)
pFGM(u, v, alpha, lower.tail=TRUE, log.p = FALSE)
qFGM(p, alpha, lower.tail=TRUE, log.p = FALSE)
rFGM(n, alpha)
Arguments
u , v |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
Details
The FGM is defined by the following distribution function
C(u,v) = u*v*(1+\alpha*(1-u)*(1-v))
for all u,v
in [0,1] and \alpha
in [0,1].
When lower.tail=FALSE
, pFGM
returns the survival copula
P(U > u, V > v)
.
Value
dFGM
gives the density,
pFGM
gives the distribution function,
qFGM
gives the quantile function, and
rFGM
generates random deviates.
The length of the result is determined by n
for
rFGM
, and is the maximum of the lengths of the
numerical parameters for the other functions.
The numerical parameters other than n
are recycled to the
length of the result. Only the first elements of the logical
parameters are used.
Author(s)
Christophe Dutang
References
Nelsen, R. (2006), An Introduction to Copula, Second Edition, Springer.
Examples
#####
# (1) density function
u <- v <- seq(0, 1, length=25)
cbind(u, v, dFGM(u, v, 1/2))
cbind(u, v, outer(u, v, dFGM, alpha=1/2))
#####
# (2) distribution function
cbind(u, v, pFGM(u, v, 1/2))
cbind(u, v, outer(u, v, pFGM, alpha=1/2))