| EPD {RTDE} | R Documentation |
The Extended Pareto Distribution
Description
Density function, distribution function, quantile function, random generation.
Usage
dEPD(x, eta, delta, rho, tau, log = FALSE)
pEPD(q, eta, delta, rho, tau, lower.tail=TRUE, log.p = FALSE)
qEPD(p, eta, delta, rho, tau, lower.tail=TRUE, log.p = FALSE,
control=list())
rEPD(n, eta, delta, rho, tau)
Arguments
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
eta |
first shape parameter. |
delta |
nuisance parameter. |
rho, tau |
second shape parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
control |
A list of control paremeters. See section Details. |
Details
The extended Pareto distribution is defined by the following density
f(x) = \frac{1}{\eta} x^{-1/\eta-1}[1+\delta(1-x^{-\tau})]^{-1/\eta-1}[1+\delta(1-(1-\tau)x^{-\tau})]
for all x>1 when parametrized by \tau.
However, a typical parametrization is obtained by
setting \tau=-\rho/\eta, i.e.
f(x) = \frac{1}{\eta} x^{-1/\eta-1}[1+\delta(1-x^{\rho/\eta})]^{-1/\eta-1}[1+\delta(1-(1+\rho/\eta)x^{\rho/\eta})]
for all x>1 when parametrized by \rho.
The control argument is a list that can supply any of the
following components:
upperboundThe upperbound used in the
optimizefunction when computing numerical quantiles, default to1e6.tolthe desired accuracy used in the
optimizefunction when computing numerical quantiles, default to1e-9.
Value
dEPD gives the density,
pEPD gives the distribution function,
qEPD gives the quantile function, and
rEPD generates random deviates.
The length of the result is determined by n for
rEPD, and is the maximum of the lengths of the
numerical parameters for the other functions.
The numerical parameters other than n are recycled to the
length of the result. Only the first elements of the logical
parameters are used.
Author(s)
Christophe Dutang
References
J. Beirlant, E. Joossens, J. Segers (2009), Second-order refined peaks-over-threshold modelling for heavy-tailed distributions, Journal of Statistical Planning and Inference, Volume 139, Issue 8, Pages 2800-2815.
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
Examples
#####
# (1) density function
x <- seq(0, 5, length=24)
cbind(x, dEPD(x, 1/2, 1/4, -1))
#####
# (2) distribution function
cbind(x, pEPD(x, 1/2, 1/4, -1, lower=FALSE))