sph.binom {RSurveillance} | R Documentation |
Binomial population specificity for imperfect test
Description
Calculates population specificity for a large or unknown population, using the Binomial distribution and adjusting for cut-point number of positives
Usage
sph.binom(n, c = 1, sp)
Arguments
n |
sample size (scalar or vector) |
c |
The cut-point number of positives to classify a cluster as positive, default=1, if positives < c result is negative, >= c is positive (scalar or vector of same length as n) |
sp |
test unit specificity (scalar or vector of same length as n) |
Value
a vector of population-level specificities
Examples
# examples for sph.imperfect.sp
sph.binom(30, 2, 0.98)
sph.binom(30, 1, 0.98)
sph.binom(1:5*10, 2, 0.98)
sph.binom(100, 1:5, 0.98)
sph.binom(100, 3, 95:100/100)
sph.binom(c(5, 10, 15, 20, 30, 50, 100, 200), 2, 0.98)
[Package RSurveillance version 0.2.1 Index]