log_Lik_Weib_gamma_weighted {RSizeBiased} | R Documentation |
Log likelihood function for the weighted gamma or Weibull distributions.
Description
Calculates the log-likelihood function of the weighted gamma or Weibull (depends on user input) distribution.
Usage
log_Lik_Weib_gamma_weighted(TRpar,datain,r,dist)
Arguments
TRpar |
A vector of length 2, containing the shape and scale parameters of the distribution. |
datain |
The available sample points. |
r |
The size (order) of the distribution. The special cases |
dist |
Character switch, enables the choice of distribution: type "weib" for the Weibull or "gamma" for the gamma distribution. |
Details
The log likelihood function of the weighted gamma distribution is defined by
\log L = \sum_{i=1}^n log f_r(X_i; \theta)
where f_r(x; \theta)
is the density of the r-
size biased gamma distribution. Setting r=0
corresponds to the log likelihood of the Gamma distribution.
In the case of Weibull, the log likelihood is defined by
\log L = \sum_{i=1}^n log f_r(X_i; \theta)
where f_r(x; \theta)
is the density of the r-
size biased Weibull distribution. Setting r=0
corresponds to the log likelihood of the Weibull distribution.
Value
A scalar, the result of the log likelihood calculation.
Author(s)
Polychronis Economou
R implementation and documentation: Polychronis Economou <peconom@upatras.gr>
References
Economou et. al. (2021). Hypothesis testing for the population mean and variance based on r-size biased samples, under review.
Examples
#Log-likelihood for the gamma distribution for true parms=(2,3), r=0:
log_Lik_Weib_gamma_weighted(c(2,3), rgamma(100, shape=2, scale=3), 0, "gamma")
#Log-likelihood for the Weibull distribution for true parms=(2,3), r=0:
log_Lik_Weib_gamma_weighted(c(2,3), rweibull(100, shape=2, scale=3), 0, "weib")