print.sienaMeta {RSiena} | R Documentation |
Methods for processing sienaMeta objects
Description
print
, summary
, and plot
methods for
sienaMeta
objects; and a function to write a LaTeX table.
Usage
## S3 method for class 'sienaMeta'
print(x, file=FALSE, reportEstimates=FALSE, ...)
## S3 method for class 'sienaMeta'
summary(object, file=FALSE, extra=TRUE, ...)
## S3 method for class 'summary.sienaMeta'
print(x, file=FALSE, extra=TRUE, ...)
## S3 method for class 'sienaMeta'
plot(x, ..., which = 1:length(x$theta),
useBound=TRUE, layout = c(2,2))
meta.table(x, d=3, option=2,
filename=paste(deparse(substitute(x)),'_global.tex',sep=""), align=TRUE)
Arguments
object |
An object of class |
x |
An object of class |
file |
Boolean: if TRUE, sends output to file named
|
reportEstimates |
Boolean: whether to report all estimates and standard errors. |
extra |
Boolean: if TRUE, prints more information. |
which |
Set of effects contained in the plot (given by sequence numbers). |
useBound |
Boolean: whether to restict plotted symbols to the bound
used in the call of |
layout |
Vector giving number of rows and columns in the arrangement of the several panels in a rectangular array, possibly spanning multiple pages. |
d |
Number of decimals to be used in table. |
option |
1: results without normality assumptions; 2: results with normality assumptions, with confidence intervals; 3: results with normality assumptions, with standard errors. |
filename |
filename for output; if "", printed to the console. |
align |
Whether to align numbers at the decimal point. |
... |
For extra arguments (none used at present). |
Value
The function print.sienaMeta
prints details of the merged
estimates of the meta-analysis carried out by siena08
,
with test statistics. See the help page for siena08
for what is produced by this function.
The function summary.sienaMeta
prints details as for the
print
method, but also details of the sienaFit
objects
included.
Output from either can be directed to a file by using the argument
file
. It will be appended to any existing file of the same
name: projname.txt
where projname
is the value of the
argument to siena08
.
The function meta.table
writes a combined table of results
for all parameters to a LaTeX file in (as default) the current working
directory. This table is a more compact version of
the results presented by print.sienaMeta
.
The function plot.sienaMeta
plots estimates against standard
errors for each effect, with reference lines added at the two-sided
significance threshold 0.05. It returns an object of class trellis
,
of the lattice package. Effects for which a score test
was requested are not plotted.
Another funnel plot, not using siena08
,
is available as funnelPlot
.
Author(s)
Ruth Ripley, Tom Snijders
References
Snijders, T.A.B, and Baerveldt, C. (2003), A Multilevel Network Study of the Effects of Delinquent Behavior on Friendship Evolution. Journal of Mathematical Sociology 27, 123–151.
See also the Siena manual and https://www.stats.ox.ac.uk/~snijders/siena/
See Also
Examples
## Not run:
# A meta-analysis for three groups does not make much sense
# for generalizing to a population of networks,
# but it the Fisher combinations of p-values are meaningful.
# But using three groups shows the idea.
Group1 <- sienaDependent(array(c(N3401, HN3401), dim=c(45, 45, 2)))
Group3 <- sienaDependent(array(c(N3403, HN3403), dim=c(37, 37, 2)))
Group4 <- sienaDependent(array(c(N3404, HN3404), dim=c(33, 33, 2)))
dataset.1 <- sienaDataCreate(Friends = Group1)
dataset.3 <- sienaDataCreate(Friends = Group3)
dataset.4 <- sienaDataCreate(Friends = Group4)
OneAlgorithm <- sienaAlgorithmCreate(projname = "SingleGroups")
effects.1 <- getEffects(dataset.1)
effects.3 <- getEffects(dataset.3)
effects.4 <- getEffects(dataset.4)
effects.1 <- includeEffects(effects.1, transTrip)
effects.1 <- setEffect(effects.1, transRecTrip, fix=TRUE, test=TRUE)
effects.3 <- includeEffects(effects.3, transTrip)
effects.3 <- setEffect(effects.3, transRecTrip, fix=TRUE, test=TRUE)
effects.4 <- includeEffects(effects.4, transTrip)
effects.4 <- setEffect(effects.4, transRecTrip, fix=TRUE, test=TRUE)
ans.1 <- siena07(OneAlgorithm, data=dataset.1, effects=effects.1, batch=TRUE)
ans.3 <- siena07(OneAlgorithm, data=dataset.3, effects=effects.3, batch=TRUE)
ans.4 <- siena07(OneAlgorithm, data=dataset.4, effects=effects.4, batch=TRUE)
ans.1
ans.3
ans.4
meta <- siena08(ans.1, ans.3, ans.4)
print(meta, reportEstimates=FALSE)
print(meta)
summary(meta)
# For specifically presenting the Fisher combinations:
# First determine the number of estimated effects:
(neff <- sum(sapply(meta, function(x){ifelse(is.list(x),
!is.null(x$cjplus),FALSE)})))
Fishers <- t(sapply(1:neff,
function(i){c(meta[[i]]$cjplus, meta[[i]]$cjminus,
meta[[i]]$cjplusp, meta[[i]]$cjminusp, 2*meta[[i]]$n1 )}))
Fishers <- as.data.frame(Fishers, row.names=names(meta)[1:neff])
names(Fishers) <- c('Fplus', 'Fminus', 'pplus', 'pminus', 'df')
Fishers
# For plotting:
plo <- plot(meta, layout = c(3,1))
plo
plo[3]
# Show effects of bound (bounding at 0.4 is not reasonable, just for example)
meta <- siena08(ans.1, ans.3, ans.4, bound=0.4)
plot(meta, which=c(2,3), layout=c(2,1))
plot(meta, which=c(2,3), layout=c(2,1), useBound=FALSE)
meta.table(meta, option=3, file='')
## End(Not run)