A C D E G I J M N O P R S T V W misc
RSNNS-package | Getting started with the RSNNS package |
analyzeClassification | Converts continuous outputs to class labels |
art1 | Create and train an art1 network |
art1.default | Create and train an art1 network |
art2 | Create and train an art2 network |
art2.default | Create and train an art2 network |
artmap | Create and train an artmap network |
artmap.default | Create and train an artmap network |
assoz | Create and train an (auto-)associative memory |
assoz.default | Create and train an (auto-)associative memory |
confusionMatrix | Computes a confusion matrix |
createNet-method | Create a layered network |
createPatSet-method | Create a pattern set |
decodeClassLabels | Decode class labels to a binary matrix |
denormalizeData | Revert data normalization |
dlvq | Create and train a dlvq network |
dlvq.default | Create and train a dlvq network |
elman | Create and train an Elman network |
elman.default | Create and train an Elman network |
encodeClassLabels | Encode a matrix of (decoded) class labels |
exportToSnnsNetFile | Export the net to a file in the original SNNS file format |
extractNetInfo | Extract information from a network |
extractNetInfo-method | Get characteristics of the network. |
extractPatterns-method | Extract the current pattern set to a matrix |
getAllHiddenUnits-method | Get all hidden units of the net |
getAllInputUnits-method | Get all input units of the net |
getAllOutputUnits-method | Get all output units of the net. |
getAllUnits-method | Get all units present in the net. |
getAllUnitsTType-method | Get all units in the net of a certain 'ttype'. |
getCompleteWeightMatrix-method | Get the complete weight matrix. |
getInfoHeader-method | Get an info header of the network. |
getNormParameters | Get normalization parameters of the input data |
getSiteDefinitions-method | Get the sites definitions of the network. |
getSnnsRDefine | Get a define of the SNNS kernel |
getSnnsRFunctionTable | Get SnnsR function table |
getTypeDefinitions-method | Get the FType definitions of the network. |
getUnitDefinitions-method | Get the unit definitions of the network. |
getUnitsByName-method | Find all units whose name begins with a given prefix. |
getWeightMatrix-method | Get the weight matrix between two sets of units |
initializeNet-method | Initialize the network |
inputColumns | Get the columns that are inputs |
jordan | Create and train a Jordan network |
jordan.default | Create and train a Jordan network |
matrixToActMapList | Convert matrix of activations to activation map list |
mlp | Create and train a multi-layer perceptron (MLP) |
mlp.default | Create and train a multi-layer perceptron (MLP) |
normalizeData | Data normalization |
normTrainingAndTestSet | Function to normalize training and test set |
outputColumns | Get the columns that are targets |
plotActMap | Plot activation map |
plotIterativeError | Plot iterative errors of an rsnns object |
plotIterativeError.rsnns | Plot iterative errors of an rsnns object |
plotRegressionError | Plot a regression error plot |
plotROC | Plot a ROC curve |
predict.rsnns | Generic predict function for rsnns object |
predictCurrPatSet-method | Predict values with a trained net |
print.rsnns | Generic print function for rsnns objects |
rbf | Create and train a radial basis function (RBF) network |
rbf.default | Create and train a radial basis function (RBF) network |
rbfDDA | Create and train an RBF network with the DDA algorithm |
rbfDDA.default | Create and train an RBF network with the DDA algorithm |
readPatFile | Load data from a pat file |
readResFile | Rudimentary parser for res files. |
resetRSNNS-method | Reset the SnnsR object. |
resolveSnnsRDefine | Resolve a define of the SNNS kernel |
RSNNS | Getting started with the RSNNS package |
rsnns | Object factory for generating rsnns objects |
rsnnsObjectFactory | Object factory for generating rsnns objects |
savePatFile | Save data to a pat file |
setSnnsRSeedValue | DEPRECATED, Set the SnnsR seed value |
setTTypeUnitsActFunc-method | Set the activation function for all units of a certain ttype. |
setUnitDefaults-method | Set the unit defaults |
snnsData | Example data of the package |
SnnsR-class | The main class of the package |
SnnsRObject$createNet | Create a layered network |
SnnsRObject$createPatSet | Create a pattern set |
SnnsRObject$extractNetInfo | Get characteristics of the network. |
SnnsRObject$extractPatterns | Extract the current pattern set to a matrix |
SnnsRObject$getAllHiddenUnits | Get all hidden units of the net |
SnnsRObject$getAllInputUnits | Get all input units of the net |
SnnsRObject$getAllOutputUnits | Get all output units of the net. |
SnnsRObject$getAllUnits | Get all units present in the net. |
SnnsRObject$getAllUnitsTType | Get all units in the net of a certain 'ttype'. |
SnnsRObject$getCompleteWeightMatrix | Get the complete weight matrix. |
SnnsRObject$getInfoHeader | Get an info header of the network. |
SnnsRObject$getSiteDefinitions | Get the sites definitions of the network. |
SnnsRObject$getTypeDefinitions | Get the FType definitions of the network. |
SnnsRObject$getUnitDefinitions | Get the unit definitions of the network. |
SnnsRObject$getUnitsByName | Find all units whose name begins with a given prefix. |
SnnsRObject$getWeightMatrix | Get the weight matrix between two sets of units |
SnnsRObject$initializeNet | Initialize the network |
SnnsRObject$predictCurrPatSet | Predict values with a trained net |
SnnsRObject$resetRSNNS | Reset the SnnsR object. |
SnnsRObject$setTTypeUnitsActFunc | Set the activation function for all units of a certain ttype. |
SnnsRObject$setUnitDefaults | Set the unit defaults |
SnnsRObject$somPredictComponentMaps | Calculate the som component maps |
SnnsRObject$somPredictCurrPatSetWinners | Get most of the relevant results from a som |
SnnsRObject$somPredictCurrPatSetWinnersSpanTree | Get the spanning tree of the SOM |
SnnsRObject$train | Train a network and test it in every training iteration |
SnnsRObject$whereAreResults | Get a list of output units of a net |
SnnsRObjectFactory | SnnsR object factory |
SnnsRObjectMethodCaller | Method caller for SnnsR objects |
SnnsR__createNet | Create a layered network |
SnnsR__createPatSet | Create a pattern set |
SnnsR__extractNetInfo | Get characteristics of the network. |
SnnsR__extractPatterns | Extract the current pattern set to a matrix |
SnnsR__getAllHiddenUnits | Get all hidden units of the net |
SnnsR__getAllInputUnits | Get all input units of the net |
SnnsR__getAllOutputUnits | Get all output units of the net. |
SnnsR__getAllUnits | Get all units present in the net. |
SnnsR__getAllUnitsTType | Get all units in the net of a certain 'ttype'. |
SnnsR__getCompleteWeightMatrix | Get the complete weight matrix. |
SnnsR__getInfoHeader | Get an info header of the network. |
SnnsR__getSiteDefinitions | Get the sites definitions of the network. |
SnnsR__getTypeDefinitions | Get the FType definitions of the network. |
SnnsR__getUnitDefinitions | Get the unit definitions of the network. |
SnnsR__getUnitsByName | Find all units whose name begins with a given prefix. |
SnnsR__getWeightMatrix | Get the weight matrix between two sets of units |
SnnsR__initializeNet | Initialize the network |
SnnsR__predictCurrPatSet | Predict values with a trained net |
SnnsR__resetRSNNS | Reset the SnnsR object. |
SnnsR__setTTypeUnitsActFunc | Set the activation function for all units of a certain ttype. |
SnnsR__setUnitDefaults | Set the unit defaults |
SnnsR__somPredictComponentMaps | Calculate the som component maps |
SnnsR__somPredictCurrPatSetWinners | Get most of the relevant results from a som |
SnnsR__somPredictCurrPatSetWinnersSpanTree | Get the spanning tree of the SOM |
SnnsR__train | Train a network and test it in every training iteration |
SnnsR__whereAreResults | Get a list of output units of a net |
som | Create and train a self-organizing map (SOM) |
som.default | Create and train a self-organizing map (SOM) |
somPredictComponentMaps-method | Calculate the som component maps |
somPredictCurrPatSetWinners-method | Get most of the relevant results from a som |
somPredictCurrPatSetWinnersSpanTree-method | Get the spanning tree of the SOM |
splitForTrainingAndTest | Function to split data into training and test set |
summary.rsnns | Generic summary function for rsnns objects |
toNumericClassLabels | Convert a vector (of class labels) to a numeric vector |
train | Internal generic train function for rsnns objects |
train-method | Train a network and test it in every training iteration |
train.rsnns | Internal generic train function for rsnns objects |
vectorToActMap | Convert a vector to an activation map |
weightMatrix | Function to extract the weight matrix of an rsnns object |
weightMatrix.rsnns | Function to extract the weight matrix of an rsnns object |
whereAreResults-method | Get a list of output units of a net |
$ | Method caller for SnnsR objects |
$-method | Method caller for SnnsR objects |