RRR {RRRR}R Documentation

Reduced-Rank Regression using Gaussian MLE

Description

Gaussian Maximum Likelihood Estimation method for Reduced-Rank Regression. This method is not robust in the sense that it assumes a Gaussian distribution for the innovations which does not take into account the heavy-tailedness of the true distribution and outliers.

Usage

RRR(y, x, z = NULL, mu = TRUE, r = 1)

Arguments

y

Matrix of dimension N*P. The matrix for the response variables. See Detail.

x

Matrix of dimension N*Q. The matrix for the explanatory variables to be projected. See Detail.

z

Matrix of dimension N*R. The matrix for the explanatory variables not to be projected. See Detail.

mu

Logical. Indicating if a constant term is included.

r

Integer. The rank for the reduced-rank matrix ABAB'. See Detail.

Details

The formulation of the reduced-rank regression is as follow:

y=μ+ABx+Dz+innov,y = \mu +AB' x + D z+innov,

where for each realization yy is a vector of dimension PP for the PP response variables, xx is a vector of dimension QQ for the QQ explanatory variables that will be projected to reduce the rank, zz is a vector of dimension RR for the RR explanatory variables that will not be projected, μ\mu is the constant vector of dimension PP, innovinnov is the innovation vector of dimension PP, DD is a coefficient matrix for zz with dimension PRP*R, AA is the so called exposure matrix with dimension PrP*r, and BB is the so called factor matrix with dimension QrQ*r. The matrix resulted from ABAB' will be a reduced rank coefficient matrix with rank of rr. The function estimates parameters μ\mu, AA, BB, DD, and SigmaSigma, the covariance matrix of the innovation's distribution, assuming the innovation has a Gaussian distribution.

Value

A list of the estimated parameters of class RRR.

spec

The input specifications. NN is the sample size.

mu

The estimated constant vector. Can be NULL.

A

The estimated exposure matrix.

B

The estimated factor matrix.

D

The estimated coefficient matrix of z. Can be NULL.

Sigma

The estimated covariance matrix of the innovation distribution.

Author(s)

Yangzhuoran Yang

References

S. Johansen, "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models,"Econometrica, vol. 59,p. 1551, Nov. 1991.

See Also

For robust reduced-rank regression estimation see function RRRR.

Examples

set.seed(2222)
data <- RRR_sim()
res <- RRR(y=data$y, x=data$x, z = data$z)
res

[Package RRRR version 1.1.1 Index]