cal_imp_func {RRBoost} | R Documentation |
Variable importance scores for the robust boosting algorithm RRBoost
Description
This function calculates variable importance scores for a previously
computed RRBoost
fit.
Usage
cal_imp_func(model, x_val, y_val, trace = FALSE)
Arguments
model |
an object returned by |
x_val |
predictor matrix for validation data (matrix/dataframe) |
y_val |
response vector for validation data (vector/dataframe) |
trace |
logical indicating whether to print the variable under calculation for monitoring progress (defaults to |
Details
This function computes permutation variable importance scores
given an object returned by Boost
and a validation data set.
Value
a vector of permutation variable importance scores (one per explanatory variable)
Author(s)
Xiaomeng Ju, xmengju@stat.ubc.ca
Examples
data(airfoil)
n <- nrow(airfoil)
n0 <- floor( 0.2 * n )
set.seed(123)
idx_test <- sample(n, n0)
idx_train <- sample((1:n)[-idx_test], floor( 0.6 * n ) )
idx_val <- (1:n)[ -c(idx_test, idx_train) ]
xx <- airfoil[, -6]
yy <- airfoil$y
xtrain <- xx[ idx_train, ]
ytrain <- yy[ idx_train ]
xval <- xx[ idx_val, ]
yval <- yy[ idx_val ]
xtest <- xx[ idx_test, ]
ytest <- yy[ idx_test ]
model = Boost(x_train = xtrain, y_train = ytrain,
x_val = xval, y_val = yval,
type = "RRBoost", error = "rmse",
y_init = "LADTree", max_depth = 1, niter = 1000,
control = Boost.control(max_depth_init = 2,
min_leaf_size_init = 20, save_tree = TRUE,
make_prediction = FALSE, cal_imp = FALSE))
var_importance <- cal_imp_func(model, x_val = xval, y_val= yval)
[Package RRBoost version 0.1 Index]