Boost.control {RRBoost} | R Documentation |
Tuning and control parameters for the robust boosting algorithm
Description
Tuning and control parameters for the RRBoost robust boosting algorithm, including the initial fit.
Usage
Boost.control(
n_init = 100,
eff_m = 0.95,
bb = 0.5,
trim_prop = NULL,
trim_c = 3,
max_depth_init = 3,
min_leaf_size_init = 10,
cal_imp = TRUE,
save_f = FALSE,
make_prediction = TRUE,
save_tree = FALSE,
precision = 4,
shrinkage = 1,
trace = FALSE
)
Arguments
n_init |
number of iterations for the SBoost step of RRBoost ($T_1,max$) (int) |
eff_m |
scalar between 0 and 1 indicating the efficiency (measured in a linear model with Gaussian errors) of Tukey's loss function used in the 2nd stage of RRBoost. |
bb |
breakdown point of the M-scale estimator used in the SBoost step (numeric) |
trim_prop |
trimming proportion if 'trmse' is used as the performance metric (numeric). 'trmse' calculates the root-mean-square error of residuals (r) of which |r| < quantile(|r|, 1-trim_prop) (e.g. trim_prop = 0.1 ignores 10% of the data and calculates RMSE of residuals whose absolute values are below 90% quantile of |r|). If both |
trim_c |
the trimming constant if 'trmse' is used as the performance metric (numeric, defaults to 3). 'trmse' calculates the root-mean-square error of the residuals (r) between median(r) + trim_c mad(r) and median(r) - trim_c mad(r). If both |
max_depth_init |
the maximum depth of the initial LADTtree (numeric, defaults to 3) |
min_leaf_size_init |
the minimum number of observations per node of the initial LADTtree (numeric, defaults to 10) |
cal_imp |
logical indicating whether to calculate variable importance (defaults to |
save_f |
logical indicating whether to save the function estimates at all iterations (defaults to |
make_prediction |
logical indicating whether to make predictions using |
save_tree |
logical indicating whether to save trees at all iterations (defaults to |
precision |
number of significant digits to keep when using validation error to calculate early stopping time (numeric, defaults to 4) |
shrinkage |
shrinkage parameter in boosting (numeric, defaults to 1 which corresponds to no shrinkage) |
trace |
logical indicating whether to print the number of completed iterations and for RRBoost the completed combinations of LADTree hyperparameters for monitoring progress (defaults to |
Details
Various tuning and control parameters for the RRBoost robust boosting algorithm implemented in the
function Boost
, including options for the initial fit.
Value
A list of all input parameters
Author(s)
Xiaomeng Ju, xmengju@stat.ubc.ca
Examples
data(airfoil)
n <- nrow(airfoil)
n0 <- floor( 0.2 * n )
set.seed(123)
idx_test <- sample(n, n0)
idx_train <- sample((1:n)[-idx_test], floor( 0.6 * n ) )
idx_val <- (1:n)[ -c(idx_test, idx_train) ]
xx <- airfoil[, -6]
yy <- airfoil$y
xtrain <- xx[ idx_train, ]
ytrain <- yy[ idx_train ]
xval <- xx[ idx_val, ]
yval <- yy[ idx_val ]
xtest <- xx[ idx_test, ]
ytest <- yy[ idx_test ]
my.control <- Boost.control(max_depth_init = 2,
min_leaf_size_init = 20, make_prediction = TRUE,
cal_imp = FALSE)
model_RRBoost_LADTree = Boost(x_train = xtrain, y_train = ytrain,
x_val = xval, y_val = yval, x_test = xtest, y_test = ytest,
type = "RRBoost", error = "rmse", y_init = "LADTree",
max_depth = 1, niter = 10, ## to keep the running time low
control = my.control)