pca_kmeans {RQdeltaCT} | R Documentation |
pca_kmeans
Description
This function performs principal component analysis (PCA) together with k means analysis for samples, and generate plot that illustrate spatial arrangement of samples based on the two first components and with assignment to k means clusters. PCA analysis can not deal with missing values, thus all samples with at least one missing value are removed from data before analysis.
Usage
pca_kmeans(
data,
do.k.means = TRUE,
k.clust = 2,
clust.names = c("Cluster1", "Cluster2"),
sel.Gene = "all",
point.size = 4,
point.shape = c(19, 17),
alpha = 0.7,
point.color = c("#66c2a5", "#fc8d62"),
add.sample.labels = FALSE,
label.size = 3,
hjust = 0,
vjust = -1,
axis.title.size = 11,
axis.text.size = 10,
legend.text.size = 11,
legend.title.group = "Group",
legend.title.cluster = "Cluster",
legend.title.size = 11,
legend.position = "right",
plot.title = "",
plot.title.size = 14,
save.to.tiff = FALSE,
dpi = 600,
width = 15,
height = 15,
name.tiff = "pca_and_kmeans"
)
Arguments
data |
Object returned from make_Ct_ready() or delta_Ct() functions. |
do.k.means |
Logical: if TRUE (default), k means analysis will be performed. |
k.clust |
Integer: number of clusters for k means analysis. Default to 2. |
clust.names |
Character vector with names of clusters, must be equal to the number of clusters specified in the k.clust parameter. |
sel.Gene |
Character vector with names of genes to include, or "all" (default) to use all genes. |
point.size |
Numeric: size of points. Default to 4. |
point.shape |
Integer: shape of points. If do.k.means = TRUE, the number of provided values must be equal to the number of cluster (k.clust). Default to c(19, 17). |
alpha |
Numeric: transparency of points, a value between 0 and 1. Default to 0.7. |
point.color |
Character vector containing colors for compared groups. The number of colors must be equal to the number of groups. Default to c("#66c2a5", "#fc8d62"). |
add.sample.labels |
Logical: if TRUE, points labels (names of samples) will be added. Default to FALSE. |
label.size |
Numeric: size of points labels (names of samples). Default to 3. |
hjust |
Numeric: horizontal position of points labels. Default to 0. |
vjust |
Numeric: vertical position of points labels. Default to -1. |
axis.title.size |
Integer: font size of axis titles. Default to 11. |
axis.text.size |
Integer: font size of axis text. Default to 10. |
legend.text.size |
Integer: font size of legend text. Default to 11. |
legend.title.group |
Character: title of legend for groups. Default to "Group". |
legend.title.cluster |
Character: title of legend for k means clusters. Default to "Clusters". |
legend.title.size |
Integer: font size of legend title. Default to 11. |
legend.position |
Position of the legend, can be "top", "right" (default), "bottom", "left", or "none" (no legend). See description for legend.position parameter in ggplot2::theme() function. |
plot.title |
Character: title of plot. Default to "". |
plot.title.size |
Integer: font size of plot title. Default to 14. |
save.to.tiff |
Logical: if TRUE, plot will be saved as .tiff file. Default to FALSE. |
dpi |
Integer: resolution of saved .tiff file. Default to 600. |
width |
Numeric: width (in cm) of saved .tiff file. Default to 15. |
height |
Numeric: height (in cm) of saved .tiff file. Default to 15. |
name.tiff |
character: name of saved .tiff file, without ".tiff" name of extension. Default to "pca_and_kmeans". |
Value
A list containing object with plot and, if do.k.means = TRUE, a confusion matrix that show classification performance of k means method. Created plot is also displayed on the graphic device.
Examples
library(tidyverse)
data(data.Ct)
data.CtF <- filter_Ct(data.Ct,
remove.Gene = c("Gene2","Gene5","Gene6","Gene9","Gene11"),
remove.Sample = c("Control08","Control16","Control22"))
data.CtF.ready <- make_Ct_ready(data.CtF, imput.by.mean.within.groups = TRUE)
data.dCt <- delta_Ct(data.CtF.ready, ref = "Gene8")
pca_kmeans(data.dCt, sel.Gene = c("Gene1","Gene16","Gene19","Gene20"))