robMean.SE {RPESE} | R Documentation |
Standard Error Estimate for Robust Location (Mean) M-Estimator of Returns
Description
robMean.SE
computes the standard error of the robust location (mean) M-estimator of the returns.
Usage
robMean.SE(
data,
family = c("mopt", "opt", "bisquare")[1],
eff = 0.95,
se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)],
cleanOutliers = FALSE,
fitting.method = c("Exponential", "Gamma")[1],
d.GLM.EN = 5,
freq.include = c("All", "Decimate", "Truncate")[1],
freq.par = 0.5,
corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
return.coef = FALSE,
...
)
Arguments
data |
Data of returns for one or multiple assets or portfolios. |
family |
Family for robust m-estimator of location. Must be one of "mopt" (default), "opt" or "bisquare". |
eff |
Tuning parameter for the normal distribution efficiency. Default is 0.99. |
se.method |
A character string indicating which method should be used to compute
the standard error of the estimated standard deviation. One or a combination of:
|
cleanOutliers |
Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE. |
fitting.method |
Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma". |
d.GLM.EN |
Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5. |
freq.include |
Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." |
freq.par |
Percentage of the frequency used if |
corOut |
Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default). |
return.coef |
Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE. |
... |
Additional parameters. |
Value
A vector or a list depending on se.method
.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
Examples
# Loading data
data(edhec, package = "PerformanceAnalytics")
# Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
"ED", "FIA", "GM", "LS", "MA",
"RV", "SS", "FOF")
# Computing the standard errors for
# the two influence functions based approaches
robMean.SE(edhec, se.method = c("IFiid","IFcorAdapt"),
fitting.method = c("Exponential", "Gamma")[1],
family = "mopt", eff = 0.95)