sim_t_tworegime {RPANDA} | R Documentation |
Recursive simulation (root-to-tip) of two-regime models
Description
Simulates datasets for a given phylogeny under two-regime matching competition (MC), diversity dependent linear (DDlin), diversity dependent exponential (DDexp), or early burst (EB) models of trait evolution. Simulations are carried out from the root to the tip of the tree.
Usage
sim_t_tworegime(regime.map, pars, root.value, Nsegments=2500,
model=c("MC","DDexp","DDlin","EB"),
verbose=TRUE, rnd=6)
Arguments
regime.map |
a stochastic map of the two regimes stored as a simmap object output from |
pars |
a vector containing the three parameters for the chosen model; all models require |
root.value |
a number specifying the trait value for the ancestor |
Nsegments |
a value specifying the total number of time segments to simulate across for the phylogeny (see Details) |
model |
model chosen to fit trait data, |
verbose |
if |
rnd |
number of digits to round timings to (see |
Details
Adjusting Nsegments
will impact the length of time the simulations take.
The length of each segment (max(nodeHeights(phylo))/Nsegments
)
should be much smaller than the smallest branch (min(phylo$edge.length)
).
Adjusting rnd
may help if function crashes.
Value
a named vector with simulated trait values for n
species in the phylogeny
Author(s)
J Drury jonathan.p.drury@gmail.com
References
Drury, J., Clavel, J., Manceau, M., and Morlon, H. 2016. Estimating the effect of competition on trait evolution using maximum likelihood inference. Systematic Biology doi 10.1093/sysbio/syw020
Nuismer, S. & Harmon, L. 2015. Predicting rates of interspecific interaction from phylogenetic trees. Ecology Letters 18:17-27.
Weir, J. & Mursleen, S. 2012. Diversity-dependent cladogenesis and trait evolution in the adaptive radiation of the auks (Aves: Alcidae). Evolution 67:403-416.
See Also
Examples
data(Cetacea_clades)
# Simulate data under the matching competition model
MC_tworegime.data<-sim_t_tworegime(Cetacea_clades,pars=c(sig2=0.01,S1=-0.1,S2=-0.01),
root.value=0,Nsegments=1000,model="MC")
# Simulate data under the diversity dependent linear model
DDlin_tworegime.data<-sim_t_tworegime(Cetacea_clades,pars=c(sig2=0.01,b1=-0.0001,b2=-0.000001),
root.value=0,Nsegments=1000,model="DDlin")
# Simulate data under the diversity dependent linear model
DDexp_tworegime.data<-sim_t_tworegime(Cetacea_clades,pars=c(sig2=0.01,r1=-0.01,r2=-0.02),
root.value=0,Nsegments=1000,model="DDexp")
# Simulate data under the diversity dependent linear model
EB.data_tworegime<-sim_t_tworegime(Cetacea_clades,pars=c(sig2=0.01,r1=-0.01,r2=-0.02),
root.value=0,Nsegments=1000,model="EB")