sim_t_comp {RPANDA} | R Documentation |
Recursive simulation (root-to-tip) of competition models
Description
Simulates datasets for a given phylogeny under matching competition (MC), diversity dependent linear (DDlin), or diversity dependent exponential (DDexp) models of trait evolution. Simulations are carried out from the root to the tip of the tree.
Usage
sim_t_comp(phylo,pars,root.value,Nsegments=1000,model="MC,DDexp,DDlin")
Arguments
phylo |
an object of type 'phylo' (see ape documentation) |
pars |
a vector containing the two parameters for the chosen model; all models require |
root.value |
a number specifying the trait value for the ancestor |
Nsegments |
a value specifying the total number of time segments to simulate across for the phylogeny (see Details) |
model |
model chosen to fit trait data, |
Details
Adjusting Nsegments
will impact the length of time the simulations take.
The length of each segment (max(nodeHeights(phylo))/Nsegments
)
should be much smaller than the smallest branch (min(phylo$edge.length)
).
Value
a named vector with simulated trait values for n
species in the phylogeny
Author(s)
J Drury jonathan.p.drury@gmail.com
References
Drury, J., Clavel, J., Manceau, M., and Morlon, H. 2016. Estimating the effect of competition on trait evolution using maximum likelihood inference. Systematic Biology doi 10.1093/sysbio/syw020
Nuismer, S. & Harmon, L. 2015. Predicting rates of interspecific interaction from phylogenetic trees. Ecology Letters 18:17-27.
Weir, J. & Mursleen, S. 2012. Diversity-dependent cladogenesis and trait evolution in the adaptive radiation of the auks (Aves: Alcidae). Evolution 67:403-416.
See Also
Examples
data(Cetacea)
# Simulate data under the matching competition model
MC.data<-sim_t_comp(Cetacea,pars=c(sig2=0.01,S=-0.1),root.value=0,Nsegments=1000,model="MC")
# Simulate data under the diversity dependent linear model
DDlin.data<-sim_t_comp(Cetacea,pars=c(sig2=0.01,b=-0.0001),root.value=0,Nsegments=1000,
model="DDlin")
# Simulate data under the diversity dependent linear model
DDexp.data<-sim_t_comp(Cetacea,pars=c(sig2=0.01,r=-0.01),root.value=0,Nsegments=1000,model="DDexp")