sim.BipartiteEvol {RPANDA} | R Documentation |
Simulation of the BipartiteEvol model
Description
Simulateof the BipartiteEvol model from Maliet et al. (2020)
Usage
sim.BipartiteEvol(nx, ny = nx, NG, dSpace = Inf, D = 1, muP,
muH, alphaP = 0, alphaH = 0, iniP = 0, iniH = 0, nP = 1, nH = 1,
rP = 1, rH = 1, effect = 1, verbose = 100, thin = 1, P = NULL, H = NULL)
Arguments
nx |
Size of the grid (the grid has size nx * ny) |
ny |
Size of the grid (default to nx, the grid has size nx * ny) |
NG |
Number of time step the model is run |
dSpace |
Size of the dispersal kernel (default to Inf, meaning there are no restrictions on dispersion) |
D |
Dimention of the trait space (default to 3) |
muP |
Mutation probability at reproduction for the individuals of clade P |
muH |
Mutation probability at reproduction for the individuals of clade H |
alphaP |
alpha parameter for clade P (1/alpha is the niche width) |
alphaH |
alpha parameter for clade H (1/alpha is the niche width) |
iniP |
Initial trait value for the individuals in clade P |
iniH |
Initial trait value for the individuals in clade P |
nP |
Number of individuals of clade P killed at each time step |
nH |
Number of individuals of clade H killed at each time step |
rP |
r parameter for clade P (r is the ratio between the fitness maximum and minimum) |
rH |
r parameter for clade H (r is the ratio between the fitness maximum and minimum) |
effect |
Standard deviation of the trait mutation kernel |
verbose |
The simulation |
thin |
The number of iterations between two recording of the state of the model (default to 1) |
P |
Optionnal, used to continue one precedent run: traits of the individuals of clade P at the end of the precedent run |
H |
Optionnal, used to continue one precedent run: traits of the individuals of clade H at the end of the precedent run |
Value
a list with
Pgenealogy |
The genalogy of clade P |
Hgenealogy |
The genalogy of clade H |
xP |
The trait values at each time step for clade P |
xH |
The trait values at each time step for cladeH |
P |
The trait values at present for clade P |
H |
The trait values at present for clade P |
Pmut |
The number of new mutations at each time step for clade P |
Hmut |
The number of new mutations at each time step for clade H |
iniP |
The initial trait values for the individuals of clade P used in the simulation |
iniH |
The initial trait values for the individuals of clade H used in the simulation |
thin.factor |
The thin value used in the simulation |
Author(s)
O. Maliet
References
Maliet, O., Loeuille, N. and Morlon, H. (2020), An individual-based model for the eco-evolutionary emergence of bipartite interaction networks. Ecol Lett. doi:10.1111/ele.13592
Examples
# run the model
set.seed(1)
if(test){
mod = sim.BipartiteEvol(nx = 8,ny = 4,NG = 500,
D = 3, muP = 0.1 , muH = 0.1,
alphaP = 0.12,alphaH = 0.12,
rP = 10, rH = 10,
verbose = 100, thin = 5)
#build the genealogies
gen = make_gen.BipartiteEvol(mod)
plot(gen$H)
#compute the phylogenies
phy1 = define_species.BipartiteEvol(gen,threshold=1)
#plot the result
plot_div.BipartiteEvol(gen,phy1, 1)
#build the network
net = build_network.BipartiteEvol(gen, phy1)
trait.id = 1
plot_net.BipartiteEvol(gen,phy1,trait.id, net,mod, nx = 10, spatial = FALSE)
## add time steps to a former run
seed=as.integer(10)
set.seed(seed)
mod = sim.BipartiteEvol(nx = 8,ny = 4,NG = 500,
D = 3, muP = 0.1 , muH = 0.1,
alphaP = 0.12,alphaH = 0.12,
rP = 10, rH = 10,
verbose = 100, thin = 5,
P=mod$P,H=mod$H) # former ru output
# update the genealogy
gen = make_gen.BipartiteEvol(mod,
treeP=gen$P, treeH=gen$H)
# update the phylogenies...
phy1 = define_species.BipartiteEvol(gen,threshold=1)
#... and the network
net = build_network.BipartiteEvol(gen, phy1)
trait.id = 1
plot_net.BipartiteEvol(gen,phy1,trait.id, net,mod, nx = 10, spatial = FALSE)
}