likelihood_t_MC_geog {RPANDA} | R Documentation |
Likelihood of a dataset under the matching competition model with biogeography.
Description
Computes the likelihood of a dataset under the matching competition model with specified sigma2
and S
values and with a geography.object
formed using CreateGeoObject
.
Usage
likelihood_t_MC_geog(phylo, data, par,geo.object)
Arguments
phylo |
an object of type 'phylo' (see ape documentation) |
data |
a named vector of continuous data with names corresponding to |
par |
a vector listing a value for |
geo.object |
a geography object indicating sympatry through time, created using |
Details
When specifying par
, log(sig2)
must be listed before S
.
Value
the negative log-likelihood value of the dataset (accordingly, the negative of the output should be recorded as the likelihood), given the phylogeny, sig2
and S
values, and geography.object
.
Note
S must be negative (if it is positive, the likelihood function will multiply input by -1).
To stabilize optimization, this function exponentiates the input sig2
value, thus the user must input the log(sig2) value to compute the correct log likelihood (see example).
Author(s)
Jonathan Drury jonathan.p.drury@gmail.com
Julien Clavel
References
Drury, J., Clavel, J., Manceau, M., and Morlon, H. 2016. Estimating the effect of competition on trait evolution using maximum likelihood inference. Systematic Biology doi 10.1093/sysbio/syw020
Nuismer, S. & Harmon, L. 2015. Predicting rates of interspecific interaction from phylogenetic trees. Ecology Letters 18:17-27.
See Also
fit_t_comp
CreateGeoObject
likelihood_t_MC
Examples
data(Anolis.data)
phylo <- Anolis.data$phylo
pPC1 <- Anolis.data$data
geography.object <- Anolis.data$geography.object
# Compute the likelihood with geography using ML parameters for fit without geography
par <- c(0.0003139751, -0.06387258)
lh <- -likelihood_t_MC_geog(phylo,pPC1,par,geography.object)