likelihood_t_MC {RPANDA} | R Documentation |
Likelihood of a dataset under the matching competition model.
Description
Computes the likelihood of a dataset under the matching competition model with specified sigma2
and S
values.
Usage
likelihood_t_MC(phylo, data, par)
Arguments
phylo |
an object of type 'phylo' (see ape documentation) |
data |
a named vector of continuous data with names corresponding to |
par |
a vector listing a value for |
Details
When specifying par
, log(sig2)
must be listed before S
.
Value
the negative log-likelihood value of the dataset (accordingly, the negative of the output should be recorded as the likelihood), given the phylogeny and sig2
and S
values
Note
To stabilize optimization, this function exponentiates the input sig2
value, thus the user must input the log(sig2) value to compute the correct log likelihood (see example).
Author(s)
Jonathan Drury jonathan.p.drury@gmail.com
Julien Clavel
References
Drury, J., Clavel, J., Manceau, M., and Morlon, H. 2016. Estimating the effect of competition on trait evolution using maximum likelihood inference. Systematic Biology doi 10.1093/sysbio/syw020
Nuismer, S. & Harmon, L. 2015. Predicting rates of interspecific interaction from phylogenetic trees. Ecology Letters 18:17-27.
See Also
fit_t_comp
likelihood_t_MC_geog
Examples
data(Anolis.data)
phylo <- Anolis.data$phylo
pPC1 <- Anolis.data$data
# Compute the likelihood that the S value is twice the ML estimate
par <- c(0.0003139751, (2*-0.06387258))
lh <- -likelihood_t_MC(phylo,pPC1,par)