likelihood_t_DD_geog {RPANDA} | R Documentation |
Likelihood of a dataset under diversity-dependent models with biogeography.
Description
Computes the likelihood of a dataset under either the linear or exponential diversity dependent model with specified sigma2
and slope values and with a geography.object
formed using CreateGeoObject
.
Usage
likelihood_t_DD_geog(phylo, data, par,geo.object,model=c("DDlin","DDexp"),maxN=NA)
Arguments
phylo |
an object of type 'phylo' (see ape documentation) |
data |
a named vector of continuous data with names corresponding to |
par |
a vector listing a value for |
geo.object |
a list of sympatry through time created using |
model |
model chosen to fit trait data, |
maxN |
when fitting |
Details
When specifying par
, log(sig2)
(see Note) must be listed before the slope parameter (b
or r
).
maxN can be calculated using maxN=max(vapply(geo.object$geography.object,function(x)max(rowSums(x)),1))
, where geo.object is the output of CreateGeoObject
Value
the negative log-likelihood value of the dataset (accordingly, the negative of the output should be recorded as the likelihood), given the phylogeny, sig2
and slope values, and geography.object
.
Note
To stabilize optimization, this function exponentiates the input sig2
value, thus the user must input the log(sig2) value to compute the correct log likelihood (see example).
Author(s)
Jonathan Drury jonathan.p.drury@gmail.com
Julien Clavel
References
Drury, J., Clavel, J., Manceau, M., and Morlon, H. 2016. Estimating the effect of competition on trait evolution using maximum likelihood inference. Systematic Biology doi 10.1093/sysbio/syw020
Weir, J. & Mursleen, S. 2012. Diversity-dependent cladogenesis and trait evolution in the adaptive radiation of the auks (Aves: Alcidae). Evolution 67:403-416.
See Also
fit_t_comp
CreateGeoObject
likelihood_t_DD
Examples
data(Anolis.data)
phylo <- Anolis.data$phylo
pPC1 <- Anolis.data$data
geography.object <- Anolis.data$geography.object
# Compute the likelihood with geography using ML parameters for fit without geography
par <- c(log(0.01153294),-0.0006692378)
maxN<-max(vapply(geography.object$geography.object,function(x)max(rowSums(x)),1))
lh <- -likelihood_t_DD_geog(phylo,pPC1,par,geography.object,model="DDlin",maxN=maxN)