getMAPS_ClaDS0 {RPANDA} | R Documentation |
Gets the Maximum A Posteriori for each ClaDS0 parameter
Description
Extract the MAPs (Maximum A Posteriori) for the marginal posterior distributions estimated with run_ClaDS0.
Usage
getMAPS_ClaDS0(phylo, sampler, burn=1/2, thin=1)
Arguments
phylo |
An object of class 'phylo'. |
sampler |
The output of a run_ClaDS0 run. |
burn |
Number of iterations to drop in the beginning of the chains. |
thin |
Thinning parameter, one iteration out of "thin" is kept to compute the MAPs. |
Value
A vector MAPS containing the MAPs for the marginal posterior distribution for each of the model's parameters.
MAPS[1:3] are the estimated hyperparameters, with MAPS[1] the sigma parameter (new rates stochasticity), MAPS[2] the alpha parameter (new rates trend), and MAPS[3] the initial speciation rate lambda_0.
MAPS[-(1:3)] are the estimated branch-specific speciation rates, given in the same order as the phylo$edges
.
Author(s)
O. Maliet
References
Maliet O., Hartig F. and Morlon H. 2019, A model with many small shifts for estimating species-specific diversificaton rates, Nature Ecology and Evolution, doi 10.1038/s41559-019-0908-0
See Also
fit_ClaDS0
, plot_ClaDS0_chains
, getMAPS_ClaDS
Examples
set.seed(1)
if(test){
obj= sim_ClaDS( lambda_0=0.1,
mu_0=0.5,
sigma_lamb=0.7,
alpha_lamb=0.90,
condition="taxa",
taxa_stop = 20,
prune_extinct = TRUE)
tree = obj$tree
speciation_rates = obj$lamb[obj$rates]
extinction_rates = obj$mu[obj$rates]
data("ClaDS0_example")
# extract the Maximum A Posteriori for each of the parameters
MAPS = getMAPS_ClaDS0(ClaDS0_example$tree,
ClaDS0_example$Cl0_chains,
thin = 10)
# plot the simulated (on the left) and inferred speciation rates (on the right)
# on the same color scale
plot_ClaDS_phylo(ClaDS0_example$tree,
ClaDS0_example$speciation_rates,
MAPS[-(1:3)])
}