GIC.fit_pl.rpanda {RPANDA} | R Documentation |
Generalized Information Criterion (GIC) to compare models fit by Maximum Likelihood (ML) or Penalized Likelihood (PL).
Description
The GIC allows comparing models fit by Maximum Likelihood (ML) or Penalized Likelihood (PL).
Usage
## S3 method for class 'fit_pl.rpanda'
GIC(object, ...)
Arguments
object |
An object of class "fit_pl.rpanda". See ?fit_t_pl |
... |
Options to be passed through. |
Details
GIC
allows comparing the fit of various models estimated by Penalized Likelihood (see ?fit_t_pl). It's a wrapper to the gic_criterion
function.
Value
a list with the following components
LogLikelihood |
the log-likelihood estimated for the model with estimated parameters |
GIC |
the GIC criterion |
bias |
the value of the bias term estimated to compute the GIC |
Author(s)
J. Clavel
References
Konishi S., Kitagawa G. 1996. Generalised information criteria in model selection. Biometrika. 83:875-890.
Clavel, J., Aristide, L., Morlon, H., 2019. A Penalized Likelihood framework for high-dimensional phylogenetic comparative methods and an application to new-world monkeys brain evolution. Syst. Biol. 68: 93-116.
See Also
Examples
if(require(mvMORPH)){
if(test){
set.seed(1)
n <- 32 # number of species
p <- 40 # number of traits
tree <- pbtree(n=n) # phylogenetic tree
R <- Posdef(p) # a random symmetric matrix (covariance)
# simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))
fit1 <- fit_t_pl(Y, tree, model="BM", method="RidgeAlt")
fit2 <- fit_t_pl(Y, tree, model="OU", method="RidgeAlt")
GIC(fit1); GIC(fit2)
}
}