OptSpace {ROptSpace} | R Documentation |
OptSpace : an algorithm for matrix reconstruction from a partially revealed set
Description
Let's assume an ideal matrix M
with (m\times n)
entries with rank r
and
we are given a partially observed matrix M\_E
which contains many missing entries.
Matrix reconstruction - or completion - is the task of filling in such entries.
OptSpace is an efficient algorithm that reconstructs M
from |E|=O(rn)
observed elements
with relative root mean square error (RMSE)
RMSE \le C(\alpha)\sqrt{nr/|E|}
Usage
OptSpace(A, ropt = NA, niter = 50, tol = 1e-06, showprogress = TRUE)
Arguments
A |
an |
ropt |
|
niter |
maximum number of iterations allowed. |
tol |
stopping criterion for reconstruction in Frobenius norm. |
showprogress |
a logical value; |
Value
a named list containing
- X
an
(n \times r)
matrix as left singular vectors.- S
an
(r \times r)
matrix as singular values.- Y
an
(m \times r)
matrix as right singular vectors.- dist
a vector containing reconstruction errors at each successive iteration.
References
Keshavan RH, Montanari A, Oh S (2010). “Matrix Completion From a Few Entries.” IEEE Transactions on Information Theory, 56(6), 2980–2998. ISSN 0018-9448.
Examples
## Parameter Settings
n = 1000;
m = 100;
r = 3;
tolerance = 1e-7
eps = 10*r*log10(n)
## Generate a matrix with given data
U = matrix(rnorm(n*r),nrow=n)
V = matrix(rnorm(m*r),nrow=m)
Sig = diag(r)
M0 = U%*%Sig%*%t(V)
## Set some entries to be NA with probability eps/sqrt(m*n)
E = 1 - ceiling(matrix(rnorm(n*m),nrow=n) - eps/sqrt(m*n))
M_E = M0
M_E[(E==0)] = NA
## Create a noisy version
noiselevel = 0.1
M_E_noise = M_E + matrix(rnorm(n*m),nrow=n)*noiselevel
## Use OptSpace for reconstruction
res1 = OptSpace(M_E,tol=tolerance)
res2 = OptSpace(M_E_noise,tol=tolerance)
## Compute errors for both cases using Frobenius norm
err_clean = norm(res1$X%*%res1$S%*%t(res1$Y)-M0,'f')/sqrt(m*n)
err_noise = norm(res2$X%*%res2$S%*%t(res2$Y)-M0,'f')/sqrt(m*n)
## print out the results
m1 = sprintf('RMSE without noise : %e',err_clean)
m2 = sprintf('RMSE with noise of %.2f : %e',noiselevel,err_noise)
print(m1)
print(m2)