| getRiskIC {ROptEst} | R Documentation |
Generic function for the computation of a risk for an IC
Description
Generic function for the computation of a risk for an IC.
Usage
getRiskIC(IC, risk, neighbor, L2Fam, ...)
## S4 method for signature 'HampIC,asCov,missing,missing'
getRiskIC(IC, risk, withCheck= TRUE, ...)
## S4 method for signature 'HampIC,asCov,missing,L2ParamFamily'
getRiskIC(IC, risk, L2Fam, withCheck= TRUE, ...)
## S4 method for signature 'TotalVarIC,asCov,missing,L2ParamFamily'
getRiskIC(IC, risk, L2Fam, withCheck = TRUE, ...)
Arguments
IC |
object of class |
risk |
object of class |
neighbor |
object of class |
... |
additional parameters to be passed to |
L2Fam |
object of class |
withCheck |
logical: should a call to |
Details
To make sure that the results are valid, it is recommended
to include an additional check of the IC properties of IC
using checkIC.
Value
The risk of an IC is computed.
Methods
- IC = "HampIC", risk = "asCov", neighbor = "missing", L2Fam = "missing"
-
asymptotic covariance of
ICread off from corresp.Risksslot. - IC = "HampIC", risk = "asCov", neighbor = "missing", L2Fam = "L2ParamFamily"
-
asymptotic covariance of
ICunderL2Famread off from corresp.Risksslot. - IC = "TotalVarIC", risk = "asCov", neighbor = "missing", L2Fam = "L2ParamFamily"
-
asymptotic covariance of
ICread off from corresp.Risksslot, resp. if this isNULLcalculates it viagetInfV.
Note
This generic function is still under construction.
Author(s)
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
References
Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269–278.
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106–115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Risk of M-estimators on Neighborhoods.
See Also
Examples
B <- BinomFamily(size = 25, prob = 0.25)
## classical optimal IC
IC0 <- optIC(model = B, risk = asCov())
getRiskIC(IC0, asCov())