getRadius {ROptEst} | R Documentation |
Computation of the Optimal Radius for Given Clipping Bound
Description
The usual robust optimality problem for given asGRisk searches the optimal clipping height b of a Hampel-type IC to given radius of the neighborhood. Instead, again for given asGRisk and for given Hampel-Type IC with given clipping height b we may determine the radius of the neighborhood for which it is optimal in the sense of the first sentence.
Usage
getRadius(IC, risk, neighbor, L2Fam)
Arguments
IC |
an IC of class |
risk |
object of class |
neighbor |
object of class |
L2Fam |
object of class |
Value
The optimal radius is computed.
Author(s)
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
References
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106–115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statistics & Decisions 22, 201-223.
Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods in Statistics 14(1), 105-131.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
See Also
ContIC-class
, TotalVarIC-class
Examples
N <- NormLocationFamily(mean=0, sd=1)
nb <- ContNeighborhood(); ri <- asMSE()
radIC <- radiusMinimaxIC(L2Fam=N, neighbor=nb, risk=ri, loRad=0.1, upRad=0.5)
getRadius(radIC, L2Fam=N, neighbor=nb, risk=ri)
## taken from script NormalScaleModel.R in folder scripts
N0 <- NormScaleFamily(mean=0, sd=1)
(N0.IC7 <- radiusMinimaxIC(L2Fam=N0, neighbor=nb, risk=ri, loRad=0, upRad=Inf))
##
getRadius(N0.IC7, risk=asMSE(), neighbor=nb, L2Fam=N0)
getRadius(N0.IC7, risk=asL4(), neighbor=nb, L2Fam=N0)