getMaxIneff {ROptEst} | R Documentation |
getMaxIneff – computation of the maximal inefficiency of an IC
Description
computes the maximal inefficiency of an IC for the radius range [0,Inf).
Usage
getMaxIneff(IC, neighbor, biastype = symmetricBias(),
normtype = NormType(), z.start = NULL,
A.start = NULL, maxiter = 50,
tol = .Machine$double.eps^0.4,
warn = TRUE, verbose = NULL, ...)
Arguments
IC |
some IC of class |
neighbor |
object of class |
biastype |
a bias type of class |
normtype |
a norm type of class |
z.start |
initial value for the centering constant. |
A.start |
initial value for the standardizing matrix. |
maxiter |
the maximum number of iterations. |
tol |
the desired accuracy (convergence tolerance). |
warn |
logical: print warnings. |
verbose |
logical: if |
... |
additional arguments to be passed to |
Value
The maximal inefficiency, i.e.; a number in [1,Inf).
Author(s)
Peter Ruckdeschel peter.ruckdeschel@fraunhofer.itwm.de
References
Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York: Wiley.
M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
H. Rieder, M. Kohl, and P. Ruckdeschel (2008). The Costs of not Knowing the Radius. Statistical Methods and Applications, 17(1) 13-40. doi:10.1007/s10260-007-0047-7.
H. Rieder, M. Kohl, and P. Ruckdeschel (2001). The Costs of not Knowing the Radius. Appeared as discussion paper Nr. 81. SFB 373 (Quantification and Simulation of Economic Processes), Humboldt University, Berlin; also available under doi:10.18452/3638.
P. Ruckdeschel (2005). Optimally One-Sided Bounded Influence Curves. Mathematical Methods of Statistics 14(1), 105-131.
P. Ruckdeschel and H. Rieder (2004). Optimal Influence Curves for General Loss Functions. Statistics & Decisions 22, 201-223. doi:10.1524/stnd.22.3.201.57067
Examples
N0 <- NormLocationFamily(mean=2, sd=3)
## L_2 family + infinitesimal neighborhood
neighbor <- ContNeighborhood(radius = 0.5)
N0.Rob1 <- InfRobModel(center = N0, neighbor = neighbor)
## OBRE solution (ARE 95%)
N0.ICA <- optIC(model = N0.Rob1, risk = asAnscombe(.95))
## OMSE solution radius 0.5
N0.ICM <- optIC(model=N0.Rob1, risk=asMSE())
## RMX solution
N0.ICR <- radiusMinimaxIC(L2Fam=N0, neighbor=neighbor,risk=asMSE())
getMaxIneff(N0.ICA,neighbor)
getMaxIneff(N0.ICM,neighbor)
getMaxIneff(N0.ICR,neighbor)
## Don't run to reduce check time on CRAN
N0ls <- NormLocationScaleFamily()
ICsc <- makeIC(list(sin,cos),N0ls)
getMaxIneff(ICsc,neighbor)