| AbstractDist {ROOPSD} | R Documentation |
AbstractDist
Description
Base class for OOP statistical distribution
Details
This class is only used to be herited
Public fields
ddist[function] density function
pdist[function] distribution function
qdist[function] quantile function
rdist[function] random generator function
ks.test[ks.test] Goodness of fit with ks.test
fit_success[bool] TRUE only if the fit is a success and is occurred
Active bindings
name[string] name of the distribution
opt[stats::optim result] Result of the MLE to find parameters
cov[matrix] Covariance matrix of parameters, inverse of hessian
coef[vector] Vector of coefficients
Methods
Public methods
Method new()
Create a new AbstractDist object.
Usage
AbstractDist$new(ddist, pdist, qdist, rdist, name, has_gr_nlll)
Arguments
ddist[function] Density function, e.g. dnorm
pdist[function] Distribution function, e.g. pnorm
qdist[function] Quantile function, e.g. qnorm
rdist[function] Random generator function, e.g. rnorm
name[str] name of the distribution
has_gr_nlll[bool] If the derived class has defined the gradient of the negative log-likelihood
Returns
A new 'AbstractDist' object.
Method rvs()
Generation sample from the histogram
Usage
AbstractDist$rvs(n)
Arguments
n[integer] Number of samples drawn
Returns
[vector] A vector of samples
Method density()
Density function
Usage
AbstractDist$density(x)
Arguments
x[vector] Values to compute the density
Returns
[vector] density
Method logdensity()
Log density function
Usage
AbstractDist$logdensity(x)
Arguments
x[vector] Values to compute the log-density
Returns
[vector] log of density
Method cdf()
Cumulative Distribution Function
Usage
AbstractDist$cdf(q)
Arguments
q[vector] Quantiles to compute the CDF
Returns
[vector] cdf values
Method sf()
Survival Function
Usage
AbstractDist$sf(q)
Arguments
q[vector] Quantiles to compute the SF
Returns
[vector] sf values
Method icdf()
Inverse of Cumulative Distribution Function
Usage
AbstractDist$icdf(p)
Arguments
p[vector] Probabilities to compute the CDF
Returns
[vector] icdf values
Method isf()
Inverse of Survival Function
Usage
AbstractDist$isf(p)
Arguments
p[vector] Probabilities to compute the SF
Returns
[vector] isf values
Method fit()
Fit method
Usage
AbstractDist$fit(Y, n_max_try = 100)
Arguments
Y[vector] Dataset to infer the histogram
n_max_try[integer] Because the optim function can fails, the fit is retry n_try times.
Returns
'self'
Method qgradient()
Gradient of the quantile function
Usage
AbstractDist$qgradient(p, lower.tail = TRUE)
Arguments
p[vector] Probabilities
lower.tail[bool] If CDF or SF.
Returns
[vector] gradient
Method qdeltaCI()
Confidence interval of the quantile function
Usage
AbstractDist$qdeltaCI(p, Rt = FALSE, alpha = 0.05)
Arguments
p[vector] Probabilities
Rt[bool] if Probabilities or return times
alpha[double] level of confidence interval
Returns
[list] Quantiles, and confidence interval
Method pdeltaCI()
Confidence interval of the CDF function
Usage
AbstractDist$pdeltaCI(x, Rt = FALSE, alpha = 0.05)
Arguments
x[vector] Quantiles
Rt[bool] if Probabilities or return times
alpha[double] level of confidence interval
Returns
[list] CDF, and confidence interval
Method diagnostic()
Diagnostic of the fitted law
Usage
AbstractDist$diagnostic(Y, alpha = 0.05)
Arguments
Y[vector] data to check
alpha[double] level of confidence interval
Returns
[NULL]
Method clone()
The objects of this class are cloneable with this method.
Usage
AbstractDist$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.