K_zero {ROI} | R Documentation |
Cone Constructors
Description
Constructor functions for the different cone types. Currently ROI supports eight different types of cones.
-
Zero cone
\mathcal{K}_{\mathrm{zero}} = \{0\}
-
Nonnegative (linear) cone
\mathcal{K}_{\mathrm{lin}} = \{x|x \geq 0 \}
-
Second-order cone
\mathcal{K}_{\mathrm{soc}} = \left\{(t, x) \ | \ ||x||_2 \leq t, x \in R^n, t \in R \right\}
-
Positive semidefinite cone
\mathcal{K}_{\mathrm{psd}} = \left\{ X \ | \ min(eig(X)) \geq 0, \ X = X^T, \ X \in R^{n \times n} \right\}
-
Exponential cone
\mathcal{K}_{\mathrm{expp}} = \left\{(x,y,z) \ | \ y e^{\frac{x}{y}} \leq z, \ y > 0 \right\}
-
Dual exponential cone
\mathcal{K}_{\mathrm{expd}} = \left\{(u,v,w) \ | \ -u e^{\frac{v}{u}} \leq e w, u < 0 \right\}
-
Power cone
\mathcal{K}_{\mathrm{powp}} = \left\{(x,y,z) \ | \ x^\alpha * y^{(1-\alpha)} \geq |z|, \ x \geq 0, \ y \geq 0 \right\}
-
Dual power cone
\mathcal{K}_{\mathrm{powd}} = \left\{ (u,v,w) \ | \ \left(\frac{u}{\alpha}\right)^\alpha * \left(\frac{v}{(1-\alpha)}\right)^{(1-\alpha)} \geq |w|, \ u \geq 0, \ v \geq 0 \right\}
Usage
K_zero(size)
K_lin(size)
K_soc(sizes)
K_psd(sizes)
K_expp(size)
K_expd(size)
K_powp(alpha)
K_powd(alpha)
Arguments
size |
a integer giving the size of the cone,
if the dimension of the cones is fixed
(i.e. |
sizes |
a integer giving the sizes of the cones,
if the dimension of the cones is not fixed
(i.e. |
alpha |
a numeric vector giving the |
Examples
K_zero(3) ## 3 equality constraints
K_lin(3) ## 3 constraints where the slack variable s lies in the linear cone