priorcontrol.bnp {ROCnReg} | R Documentation |
Prior information for the AROC.bnp
and cROC.bnp
Description
This function is used to set various parameters controlling the prior information to be used in the AROC.bnp
and cROC.bnp
functions.
Usage
priorcontrol.bnp(m0 = NA, S0 = NA, nu = NA, Psi = NA, a = 2, b = NA,
alpha = 1, L = 10)
Arguments
m0 |
A numeric vector. Hyperparameter; mean vector of the (multivariate) normal prior distribution for the mean of the normal component of the centring distribution. |
S0 |
A numeric matrix. Hyperparameter; covariance matrix of the (multivariate) normal prior distribution for the mean of the normal component of the centring distribution. |
nu |
A numeric value. Hyperparameter; degrees of freedom of the Wishart prior distribution for the precision matrix of the the normal component of the centring distribution. |
Psi |
A numeric matrix. Hyperparameter; scale matrix of the Wishart distribution for the precision matrix of the the normal component of the centring distribution. |
a |
A numeric value. Hyperparameter; shape parameter of the gamma prior distribution for the precisions (inverse variances) of each component. The default is 2. |
b |
A numeric value. Hyperparameter; shape parameter of the gamma prior distribution for the precisions (inverse variances) of each component. |
alpha |
A numeric value. Precision parameter of the Dirichlet Process. The default is 1. |
L |
A numeric value. Upper bound on the number of mixture components. Setting L = 1 corresponds to a normal model. The default is 10. |
Value
A list with components for each of the possible arguments.