densitycontrol.aroc {ROCnReg} | R Documentation |
Conditional density estimates of test outcomes in the healthy population
Description
This function is used to set various parameters controlling the estimation of the conditional densities of test outcomes in the healthy group.
Usage
densitycontrol.aroc(compute = FALSE, grid.h = NA, newdata = NA)
Arguments
compute |
Logical value. If TRUE the conditional densities of test outcomes in the healthy group are estimated. |
grid.h |
Grid of test outcomes in the healthy group where the conditional density estimates are to be evaluated. Value |
newdata |
Data frame containing the values of the covariates at which the conditional density estimates are computed. |
Details
The value returned by this function is used as a control argument of the AROC.bnp
function.
Value
A list with components for each of the possible arguments.
See Also
Examples
library(ROCnReg)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
# Covariate for prediction
agep <- seq(min(newpsa$age), max(newpsa$age), length = 5)
df.pred <- data.frame(age = agep)
AROC_bnp <- AROC.bnp(formula.h = l_marker1 ~ f(age, K = 0),
group = "status",
tag.h = 0,
data = newpsa,
standardise = TRUE,
p = seq(0, 1, len = 101),
compute.lpml = TRUE,
compute.WAIC = TRUE,
compute.DIC = TRUE,
pauc = pauccontrol(compute = TRUE, value = 0.5, focus = "FPF"),
density = densitycontrol.aroc(compute = TRUE, grid.h = NA, newdata = df.pred),
mcmc = mcmccontrol(nsave = 500, nburn = 100, nskip = 1)
)
[Package ROCnReg version 1.0-9 Index]