Performance Assessment of Binary Classifier with Visualization


[Up] [Top]

Documentation for package ‘ROCit’ version 2.1.2

Help Pages

cartesian_2D Cartesian Product of Two Vectors
ciAUC Confidence Interval of AUC
ciAUC.rocit Confidence Interval of AUC
ciROC Confidence Interval of ROC curve
ciROC.rocit Confidence Interval of ROC curve
ciROCbin Confidence Interval of Binormal ROC Curve
ciROCemp Confidence Interval of Empirical ROC Curve
convertclass Converts Binary Vector into 1 and 0
Diabetes Diabetes Data
gainstable Gains Table for Binary Classifier
gainstable.default Gains Table for Binary Classifier
gainstable.rocit Gains Table for Binary Classifier
getsurvival Survival Probability
ksplot KS Plot
ksplot.rocit KS Plot
Loan Loan Data
measureit Performance Metrics of Binary Classifier
measureit.default Performance Metrics of Binary Classifier
measureit.rocit Performance Metrics of Binary Classifier
MLestimates ML Estimate of Normal Parameters
plot.gainstable Plot '"gainstable"' Object
plot.rocci Plot ROC Curve with confidence limits
plot.rocit Plot ROC Curve
print.gainstable Print "gainstable" Object
print.measureit Print "measureit" Object
print.rocci Print 'rocci' Object
print.rocit Print 'rocit' Object
print.rocitaucci Print Confidence Interval of AUC
rankorderdata Rank order data
rocit ROC Analysis of Binary Classifier
summary.rocit Summary of rocit object
trapezoidarea Approximate Area with Trapezoid Rule