MClogit {ROCSI} | R Documentation |
MClogit
Description
function for modified covariate methods based on glmnet
Usage
MClogit(
dataset,
yvar,
xvars,
trtvar,
cvar = NULL,
nfolds = 5,
type = "binary",
newx = NULL,
bestsub = "lambda.1se",
type.measure = "auc"
)
Arguments
dataset |
data matrix for training dataset |
yvar |
column name for outcome |
xvars |
a string vector of column names for input markers |
trtvar |
column name for treatment (the column should contain binary code with 1 being treatment and 0 being control) |
cvar |
column name for censor (the column should contain binary code with 1 being event and 0 being censored) |
nfolds |
n fold CV used for cv.glmnet |
type |
outcome type ("binary" for binary outcome and "survival" for time-to-event outcome) |
newx |
data matrix for testing dataset X |
bestsub |
criteria for best lambda, used by glmnet |
type.measure |
type of measure used by glmnet |
Details
function for ROCSI
Value
A list with ROCSI output
- x.logit
final beta estimated from MClogit
- predScore
a data.frame of testing data and its predictive signature scores (based on beta.aABC) for each subjects
- abc
ABC in testing dataset based on optimal beta
- fit.cv
the fitted glmnet object
Examples
n <- 100
k <- 5
prevalence <- sqrt(0.5)
rho<-0.2
sig2 <- 2
rhos.bt.real <- c(0, rep(0.1, (k-3)))*sig2
y.sig2 <- 1
yvar="y.binary"
xvars=paste("x", c(1:k), sep="")
trtvar="treatment"
prog.eff <- 0.5
effect.size <- 1
a.constent <- effect.size/(2*(1-prevalence))
ObsData <- data.gen(n=n, k=k, prevalence=prevalence, prog.eff=prog.eff,
sig2=sig2, y.sig2=y.sig2, rho=rho,
rhos.bt.real=rhos.bt.real, a.constent=a.constent)
TestData <- data.gen(n=n, k=k, prevalence=prevalence, prog.eff=prog.eff,
sig2=sig2, y.sig2=y.sig2, rho=rho,
rhos.bt.real=rhos.bt.real, a.constent=a.constent)
bst.mod <- MClogit(dataset=ObsData$data, yvar=yvar, xvars=xvars,
trtvar=trtvar, nfolds = 5, newx=TestData$data,
type="binary", bestsub="lambda.1se")
bst.mod$abc
bst.mod$x.logit[-1,1]