price.gb.option {RND} | R Documentation |
Generalized Beta Option Pricing
Description
price.gb.option
computes the price of options.
Usage
price.gb.option(r, te, s0, k, y, a, b, v, w)
Arguments
r |
risk free interest rate |
te |
time to expiration |
s0 |
current asset value |
k |
strike |
y |
dividend yield |
a |
power parameter > 0 |
b |
scale paramter > 0 |
v |
first beta paramter > 0 |
w |
second beta parameter > 0 |
Details
This function is used to compute European option prices when the underlying has a generalized beta (GB) distribution. Let B be a beta random variable with parameters v and w. Then Z = b *(B/(1-B))^(1/a) is a generalized beta random variable with parameters with (a,b,v,w).
Value
prob.1 |
Probability that a GB random variable with parameters (a,b,v+1/a,w-1/a) will be above the strike |
prob.2 |
Probability that a GB random variable with parameters (a,b,v,w) will be above the strike |
call |
call price |
put |
put price |
Author(s)
Kam Hamidieh
References
R.M. Bookstaber and J.B. McDonald (1987) A general distribution for describing security price returns. Journal of Business, 60, 401-424
X. Liu and M.B. Shackleton and S.J. Taylor and X. Xu (2007) Closed-form transformations from risk-neutral to real-world distributions Journal of Business, 60, 401-424
E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Distributions Springer-Verlag, London
Examples
#
# A basic GB option pricing....
#
r = 0.03
te = 50/365
s0 = 1000.086
k = seq(from = 800, to = 1200, by = 10)
y = 0.01
a = 10
b = 1000
v = 2.85
w = 2.85
price.gb.option(r = r, te = te, s0 = s0, k = k, y = y, a = a, b = b, v = v, w = w)