price.bsm.option {RND} | R Documentation |
Price BSM Option
Description
bsm.option.price
computes the BSM European option prices.
Usage
price.bsm.option(s0, k, r, te, sigma, y)
Arguments
s0 |
current asset value |
k |
strike |
r |
risk free rate |
te |
time to expiration |
sigma |
volatility |
y |
dividend yield |
Details
This function implements the classic Black-Scholes-Merton option pricing model.
Value
d1 |
value of |
d2 |
value of |
call |
call price |
put |
put price |
Author(s)
Kam Hamidieh
References
E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Distributions Springer-Verlag, London
J. Hull (2011) Options, Futures, and Other Derivatives and DerivaGem Package Prentice Hall, Englewood Cliffs, New Jersey, 8th Edition
R. L. McDonald (2013) Derivatives Markets Pearson, Upper Saddle River, New Jersey, 3rd Edition
Examples
#
# call should be 4.76, put should be 0.81, from Hull 8th, page 315, 316
#
r = 0.10
te = 0.50
s0 = 42
k = 40
sigma = 0.20
y = 0
bsm.option = price.bsm.option(r =r, te = te, s0 = s0, k = k, sigma = sigma, y = y)
bsm.option
#
# Make sure put-call parity holds, Hull 8th, page 351
#
(bsm.option$call - bsm.option$put) - (s0 * exp(-y*te) - k * exp(-r*te))
[Package RND version 1.2 Index]