pgb {RND} | R Documentation |
CDF of Generalized Beta
Description
pgb
is the cumulative distribution function (CDF) of a genaralized beta random variable.
Usage
pgb(x, a, b, v, w)
Arguments
x |
value at which the CDF is to be evaluated |
a |
power parameter > 0 |
b |
scale paramter > 0 |
v |
first beta paramter > 0 |
w |
second beta parameter > 0 |
Details
Let B be a beta random variable with parameters v and w. Then Z = b *(B/(1-B))^(1/a) is a generalized beta random variable with parameters (a,b,v,w).
Value
out |
CDF value at x |
Author(s)
Kam Hamidieh
References
R.M. Bookstaber and J.B. McDonald (1987) A general distribution for describing security price returns. Journal of Business, 60, 401-424
X. Liu and M.B. Shackleton and S.J. Taylor and X. Xu (2007) Closed-form transformations from risk-neutral to real-world distributions Journal of Business, 60, 401-424
E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Distributions Springer-Verlag, London
Examples
#
# What does the cdf of a GB look like?
#
a = 1
b = 10
v = 2
w = 2
x = seq(from = 0, to = 500, by = 0.01)
y = pgb(x = x, a = a, b = b, v = v, w = w)
plot(y ~ x, type = "l")
abline(h=c(0,1), lty=2)