fit.implied.volatility.curve {RND} | R Documentation |
Fit Implied Quadratic Volatility Curve
Description
fit.implied.volatility.curve
estimates the coefficients of the quadratic equation for the implied volatilities.
Usage
fit.implied.volatility.curve(x, k)
Arguments
x |
a set of implied volatilities |
k |
range of strikes |
Details
This function estimates volatility \sigma
as a quadratic function of strike k
with
the coefficents a_0, a_1, a_2
: \sigma(k) = a_0 + a_1 k + a_2 k^2
Value
a0 |
constant term in the quadratic ploynomial |
a1 |
coefficient term of k in the quadratic ploynomial |
a2 |
coefficient term of k squared in the quadratic polynomial |
summary.obj |
statistical summary of the fit |
Author(s)
Kam Hamidieh
References
D. Shimko (1993) Bounds of probability. Risk, 6, 33-47
E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Distributions Springer-Verlag, London
Examples
#
# Suppose we see the following implied volatilities and strikes:
#
implied.sigma = c(0.11, 0.08, 0.065, 0.06, 0.05)
strikes = c(340, 360, 380, 400, 410)
tmp = fit.implied.volatility.curve(x = implied.sigma, k = strikes)
tmp
strike.range = 340:410
plot(implied.sigma ~ strikes)
lines(strike.range, tmp$a0 + tmp$a1 * strike.range + tmp$a2 * strike.range^2)
[Package RND version 1.2 Index]