NCEP.vis.points {RNCEP} | R Documentation |
Visualize Weather Data Interpolated to a Point on a Map
Description
This function creates a map with points. The color of the points indicates the value of some variable at that point. These values can e.g. be obtained by applying the function NCEP.interp
.
Usage
NCEP.vis.points(wx, lats, lons, cols=heat.colors(64),
transparency=.5, connect=TRUE, axis.args=NULL,
points.args=NULL, map.args=NULL, grid.args=NULL,
title.args=NULL, image.plot.args=NULL, lines.args=NULL)
Arguments
wx |
A vector of weather data as returned by |
lats |
A vector of latitudes in decimal degrees indicating the locations of the points |
lons |
A vector of longitudes in decimal degrees indicating the locations of the points |
cols |
A vector of colors such as that generated by |
transparency |
A numeric value between 0 and 1 indicating the transparency of the filled points on the map. |
connect |
Logical. Should a line be drawn connecting the points? |
axis.args |
A list of arguments controlling the drawing of axes. See |
points.args |
A list of arguments controlling the drawing of points. See |
map.args |
A list of arguments controlling the drawing of the map. See |
grid.args |
A list of arguments controlling the drawing of the lat/long grid lines. See |
title.args |
A list of arguments controlling the how titles and axis lables are written. See |
image.plot.args |
A list of arguments controlling the plotting of the color-bar legend and the legend axis and labels. See |
lines.args |
A list of arguments controlling the drawing of the line connecting the points. See |
Details
Most of the components of a plot produced by this function can be controlled by supplying a list of arguments to the embedded function that produces the particular component of the plot.
For example, the text and size of the plot's title can be controlled by specifying a list of acceptable arguments to title.args
.
Similarly, the axes, map, and grid lines are controlled by specifying a list of acceptable arguements to axis.args
, map.args
, and grid.args
, respectively.
Through the argument image.plot.args
the user can control the plotting of the color-bar legend and the color-bar's title and axis labels.
See the examples below for a demonstration of how to apply these different arguments.
Value
A plot is produced. No data are returned.
Author(s)
Michael U. Kemp mukemp+RNCEP@gmail.com
References
To cite package 'RNCEP' in publications use:
Kemp, M. U., van Loon, E. E., Shamoun-Baranes, J., and Bouten, W. 2011. RNCEP:global weather and climate data at your fingertips. – Methods in Ecology and Evolution. DOI:10.1111/j.2041-210X.2011.00138.x.
Examples
## Not run:
library(RNCEP)
## In this example, we use datetime and locational data
## obtained from a GPS device attached to a lesser
## black-backed gull.
data(gull, package='RNCEP')
## First, visualize the entire track representing altitude
## with the point colors ##
## Note the specification of the title
## Also, note the specification of the legend label
## and adjustment of its placement
NCEP.vis.points(wx=gull$altitude, lats=gull$latitude,
lons=gull$longitude, cols=topo.colors(64),
title.args=list(main='Lesser black-backed gull'),
image.plot.args=list(legend.args=list(text='Altitude',
adj=-1, cex=1.25)))
## Take a subset of the data based on the datetime of
## the measurement ##
ss <- subset(gull, format(gull$datetime, "%Y-%m-%d %H:%M:%S") >=
"2008-09-19 16:00:00" & format(gull$datetime,
"%Y-%m-%d %H:%M:%S") <= "2008-09-19 19:30:00")
## Now collect cloud cover, temperature, and wind
## information for each point in the subset ##
cloud <- NCEP.interp(variable='tcdc.eatm', level='gaussian',
lat=ss$latitude, lon=ss$longitude, dt=ss$datetime,
reanalysis2=TRUE, keep.unpacking.info=TRUE)
temp <- NCEP.interp(variable='air.sig995', level='surface',
lat=ss$latitude, lon=ss$longitude, dt=ss$datetime,
reanalysis2=FALSE, keep.unpacking.info=TRUE)
uwind <- NCEP.interp(variable='uwnd', level=925,
lat=ss$latitude, lon=ss$longitude, dt=ss$datetime,
reanalysis2=TRUE, keep.unpacking.info=TRUE)
vwind <- NCEP.interp(variable='vwnd', level=925,
lat=ss$latitude, lon=ss$longitude, dt=ss$datetime,
reanalysis2=TRUE, keep.unpacking.info=TRUE)
## Now visualize the subset of the GPS track using color
## to indicate the cloud cover ##
## Note the adjustment to the color of the basemap
## And the setting of the map range ##
## And the explicit placement of the colorbar legend
## using the smallplot argument
NCEP.vis.points(wx=cloud, lats=ss$latitude, lons=ss$longitude,
cols=rev(heat.colors(64)),
map.args=list(col='darkgreen',xlim=c(-7,4), ylim=c(40,50)),
title.args=list(main='Lesser black-backed gull'),
image.plot.args=list(legend.args=list(text='Cloud Cover %',
adj=-.1, padj=-.5, cex=1),
smallplot=c(.83,.86,.15,.85)))
## Now visualize the subset of the GPS track using color
## to indicate the temperature ##
## Note the adjustment of point size
NCEP.vis.points(wx=temp, lats=ss$latitude, lons=ss$longitude,
cols=rev(heat.colors(64)),
points.args=list(cex=1.25),
title.args=list(main='Lesser black-backed gull'),
image.plot.args=list(legend.args=list(text='Kelvin',
adj=-.4, padj=-.5, cex=1.15)),
map.args=list(xlim=c(-7,4), ylim=c(40,50)))
## Now calculate the tailwind component from the U and V
## wind components assuming that the bird's preferred
## direction is 225 degrees
tailwind <- (sqrt(uwind^2 + vwind^2)*cos(((atan2(uwind,vwind)*
(180/pi))-225)*(pi/180)))
## Now visualize the subset of the GPS track using color
## to indicate the tailwind speed ##
## Note the adjustment of grid and axis properties
NCEP.vis.points(wx=tailwind, lats=ss$latitude, lons=ss$longitude,
cols=rev(heat.colors(64)),
axis.args=list(las=2), grid.args=list(lty=1),
title.args=list(main='Lesser black-backed gull'),
image.plot.args=list(legend.args=list(text='Tailwind m/s',
adj=0, padj=-2, cex=1.15)),
map.args=list(xlim=c(-7,4), ylim=c(40,50)))
## End(Not run)