RNAmf_three_level {RNAmf} | R Documentation |
Fitting the model with three fidelity levels
Description
The function fits RNA models with designs of three fidelity levels.
The estimation method is based on MLE.
Possible kernel choices are squared exponential, Matern kernel with smoothness parameter 1.5 and 2.5.
The function returns fitted model by RNAmf_two_level
, fitted model at level 3, whether constant mean or not, and kernel choice.
Usage
RNAmf_three_level(X1, y1, X2, y2, X3, y3, kernel = "sqex", constant = TRUE, ...)
Arguments
X1 |
vector or matrix of input locations for the low fidelity level. |
y1 |
vector of response values for the low fidelity level. |
X2 |
vector or matrix of input locations for the medium fidelity level. |
y2 |
vector of response values for the medium fidelity level. |
X3 |
vector or matrix of input locations for the high fidelity level. |
y3 |
vector of response values for the high fidelity level. |
kernel |
character specifying kernel type to be used, to be chosen between |
constant |
logical indicating for constant mean of GP ( |
... |
for compatibility with |
Details
Consider the model
\begin{cases}
& f_1(\bm{x}) = W_1(\bm{x}),\\
& f_l(\bm{x}) = W_l(\bm{x}, f_{l-1}(\bm{x})) \quad\text{for}\quad l=2,3,
\end{cases}
where f_l
is the simulation code at fidelity level l
, and
W_l(\bm{x}) \sim GP(\alpha_l, \tau_l^2 K_l(\bm{x}, \bm{x}'))
is GP model.
Hyperparameters (\alpha_l, \tau_l^2, \bm{\theta_l})
are estimated by
maximizing the log-likelihood via an optimization algorithm "L-BFGS-B".
For constant=FALSE
, \alpha_l=0
.
Covariance kernel is defined as:
K_l(\bm{x}, \bm{x}')=\prod^d_{j=1}\phi(x_j,x'_j;\theta_{lj})
with
\phi(x, x';\theta) = \exp \left( -\frac{ \left( x - x' \right)^2}{\theta} \right)
for squared exponential kernel; kernel="sqex"
,
\phi(x,x';\theta) =\left( 1+\frac{\sqrt{3}|x- x'|}{\theta} \right) \exp \left( -\frac{\sqrt{3}|x- x'|}{\theta} \right)
for Matern kernel with the smoothness parameter of 1.5; kernel="matern1.5"
and
\phi(x, x';\theta) = \left( 1+\frac{\sqrt{5}|x-x'|}{\theta} +\frac{5(x-x')^2}{3\theta^2} \right) \exp \left( -\frac{\sqrt{5}|x-x'|}{\theta} \right)
for Matern kernel with the smoothness parameter of 2.5; kernel="matern2.5"
.
For details, see Heo and Sung (2024, <doi:10.1080/00401706.2024.2376173>).
Value
-
fit.RNAmf_two_level
: a classRNAmf
object fitted byRNAmf_two_level
. It contains a list of\begin{cases} & \text{\code{fit1} for } (X_1, y_1),\\ & \text{\code{fit2} for } ((X_2, f_1(X_2)), y_2), \end{cases}
. SeeRNAmf_two_level
. -
fit3
: list of fitted model for((X_2, f_2(X_3, f_1(X_3))), y_3)
. -
constant
: copy ofconstant
. -
kernel
: copy ofkernel
. -
level
: a level of the fidelity. It returns 3. -
time
: a scalar of the time for the computation.
See Also
predict.RNAmf
for prediction.
Examples
### three levels example ###
library(lhs)
### Branin function ###
branin <- function(xx, l){
x1 <- xx[1]
x2 <- xx[2]
if(l == 1){
10*sqrt((-1.275*(1.2*x1+0.4)^2/pi^2+5*(1.2*x1+0.4)/pi+(1.2*x2+0.4)-6)^2 +
(10-5/(4*pi))*cos((1.2*x1+0.4))+ 10) + 2*(1.2*x1+1.9) - 3*(3*(1.2*x2+2.4)-1) - 1 - 3*x2 + 1
}else if(l == 2){
10*sqrt((-1.275*(x1+2)^2/pi^2+5*(x1+2)/pi+(x2+2)-6)^2 +
(10-5/(4*pi))*cos((x1+2))+ 10) + 2*(x1-0.5) - 3*(3*x2-1) - 1
}else if(l == 3){
(-1.275*x1^2/pi^2+5*x1/pi+x2-6)^2 + (10-5/(4*pi))*cos(x1)+ 10
}
}
output.branin <- function(x, l){
factor_range <- list("x1" = c(-5, 10), "x2" = c(0, 15))
for(i in 1:length(factor_range)) x[i] <- factor_range[[i]][1] + x[i] * diff(factor_range[[i]])
branin(x[1:2], l)
}
### training data ###
n1 <- 20; n2 <- 15; n3 <- 10
### fix seed to reproduce the result ###
set.seed(1)
### generate initial nested design ###
X <- NestedX(c(n1, n2, n3), 2)
X1 <- X[[1]]
X2 <- X[[2]]
X3 <- X[[3]]
### n1, n2 and n3 might be changed from NestedX ###
### assign n1, n2 and n3 again ###
n1 <- nrow(X1)
n2 <- nrow(X2)
n3 <- nrow(X3)
y1 <- apply(X1,1,output.branin, l=1)
y2 <- apply(X2,1,output.branin, l=2)
y3 <- apply(X3,1,output.branin, l=3)
### fit an RNAmf ###
fit.RNAmf <- RNAmf_three_level(X1, y1, X2, y2, X3, y3, kernel = "sqex")