plotDataBoxplot {RMixtCompUtilities} | R Documentation |
Boxplot per class
Description
Display a boxplot (5
Usage
plotDataBoxplot(
output,
var,
class = seq_len(output$algo$nClass),
grl = TRUE,
pkg = c("ggplot2", "plotly"),
...
)
Arguments
output |
object returned by mixtCompLearn function from RMixtComp or rmcMultiRun function from RMixtCompIO |
var |
name of the variable |
class |
classes to plot |
grl |
if TRUE plot the general distribution of the data |
pkg |
"ggplot2" or "plotly". Package used to plot |
... |
other parameters (see Details) |
Details
For functional data, three other parameters are available:
- add.obs
if TRUE, observations are added to the plot. Default = FALSE.
- ylim
ylim of the plot.
- xlim
xlim of the plot.
Author(s)
Matthieu MARBAC
See Also
Other plot:
heatmapClass()
,
heatmapTikSorted()
,
heatmapVar()
,
histMisclassif()
,
plot.MixtComp()
,
plotConvergence()
,
plotDataCI()
,
plotDiscrimClass()
,
plotDiscrimVar()
,
plotParamConvergence()
,
plotProportion()
Examples
if (requireNamespace("RMixtCompIO", quietly = TRUE)) {
dataLearn <- list(
var1 = as.character(c(rnorm(50, -2, 0.8), rnorm(50, 2, 0.8))),
var2 = as.character(c(rnorm(50, 2), rpois(50, 8)))
)
model <- list(
var1 = list(type = "Gaussian", paramStr = ""),
var2 = list(type = "Poisson", paramStr = "")
)
algo <- list(
nClass = 2,
nInd = 100,
nbBurnInIter = 100,
nbIter = 100,
nbGibbsBurnInIter = 100,
nbGibbsIter = 100,
nInitPerClass = 3,
nSemTry = 20,
confidenceLevel = 0.95,
ratioStableCriterion = 0.95,
nStableCriterion = 10,
mode = "learn"
)
resLearn <-RMixtCompIO::rmcMultiRun(algo, dataLearn, model, nRun = 3)
# plot
plotDataBoxplot(resLearn, "var1")
}
[Package RMixtCompUtilities version 4.1.6 Index]