histMisclassif {RMixtCompUtilities} | R Documentation |
Histogram of the misclassification probabilities
Description
Histogram of the misclassification probabilities
Usage
histMisclassif(output, pkg = c("ggplot2", "plotly"), ...)
Arguments
output |
object returned by mixtCompLearn function from RMixtComp or rmcMultiRun function from RMixtCompIO |
pkg |
"ggplot2" or "plotly". Package used to plot |
... |
arguments to be passed to plot_ly |
Details
Missclassification probability of observation i is denoted err_i err_i = 1 - max_k=1,...,K P(Z_i=k|x_i) Histograms of err_i's can be plotted for a specific class, all classes or every class
Author(s)
Matthieu MARBAC
See Also
Other plot:
heatmapClass()
,
heatmapTikSorted()
,
heatmapVar()
,
plot.MixtComp()
,
plotConvergence()
,
plotDataBoxplot()
,
plotDataCI()
,
plotDiscrimClass()
,
plotDiscrimVar()
,
plotParamConvergence()
,
plotProportion()
Examples
if (requireNamespace("RMixtCompIO", quietly = TRUE)) {
dataLearn <- list(
var1 = as.character(c(rnorm(50, -2, 0.8), rnorm(50, 2, 0.8))),
var2 = as.character(c(rnorm(50, 2), rpois(50, 8)))
)
model <- list(
var1 = list(type = "Gaussian", paramStr = ""),
var2 = list(type = "Poisson", paramStr = "")
)
algo <- list(
nClass = 2,
nInd = 100,
nbBurnInIter = 100,
nbIter = 100,
nbGibbsBurnInIter = 100,
nbGibbsIter = 100,
nInitPerClass = 3,
nSemTry = 20,
confidenceLevel = 0.95,
ratioStableCriterion = 0.95,
nStableCriterion = 10,
mode = "learn"
)
resLearn <-RMixtCompIO::rmcMultiRun(algo, dataLearn, model, nRun = 3)
# plot
histMisclassif(resLearn)
}
[Package RMixtCompUtilities version 4.1.6 Index]