heatmapVar {RMixtCompUtilities} | R Documentation |
Heatmap of the similarities between variables about clustering
Description
Heatmap of the similarities between variables about clustering
Usage
heatmapVar(output, pkg = c("ggplot2", "plotly"), ...)
Arguments
output |
object returned by mixtCompLearn function from RMixtComp or rmcMultiRun function from RMixtCompIO |
pkg |
"ggplot2" or "plotly". Package used to plot |
... |
arguments to be passed to plot_ly. For pkg = "ggplot2", addValues = TRUE prints similarity values on the heatmap |
Details
The similarities between variables j and h is defined by Delta(j,h)
Delta(j,h) = 1 - \sqrt{(1/n) * \sum_{i=1}^n \sum_{k=1}^K (P(Z_i=k|x_{ij}) - P(Z_i=k|x_{ih}))^2}
Author(s)
Matthieu MARBAC
See Also
Other plot:
heatmapClass()
,
heatmapTikSorted()
,
histMisclassif()
,
plot.MixtComp()
,
plotConvergence()
,
plotDataBoxplot()
,
plotDataCI()
,
plotDiscrimClass()
,
plotDiscrimVar()
,
plotParamConvergence()
,
plotProportion()
Examples
if (requireNamespace("RMixtCompIO", quietly = TRUE)) {
dataLearn <- list(
var1 = as.character(c(rnorm(50, -2, 0.8), rnorm(50, 2, 0.8))),
var2 = as.character(c(rnorm(50, 2), rpois(50, 8)))
)
model <- list(
var1 = list(type = "Gaussian", paramStr = ""),
var2 = list(type = "Poisson", paramStr = "")
)
algo <- list(
nClass = 2,
nInd = 100,
nbBurnInIter = 100,
nbIter = 100,
nbGibbsBurnInIter = 100,
nbGibbsIter = 100,
nInitPerClass = 3,
nSemTry = 20,
confidenceLevel = 0.95,
ratioStableCriterion = 0.95,
nStableCriterion = 10,
mode = "learn"
)
resLearn <-RMixtCompIO::rmcMultiRun(algo, dataLearn, model, nRun = 3)
# plot
heatmapVar(resLearn)
}
[Package RMixtCompUtilities version 4.1.6 Index]