getCompletedData {RMixtCompUtilities} | R Documentation |
Get the completed data from MixtComp object
Description
Get the completed data from MixtComp object (does not manage functional models)
Usage
getCompletedData(outMixtComp, var = NULL, with.z_class = FALSE)
Arguments
outMixtComp |
object of class MixtCompLearn or MixtComp obtained using |
var |
Name of the variables for which to extract the completed data. Default is NULL (all variables are extracted) |
with.z_class |
if TRUE, z_class is returned with the data. |
Value
a matrix with the data completed by MixtComp (z_class is in the first column and then variables are sorted in alphabetic order, it may differ from the original order of the data).
Author(s)
Quentin Grimonprez
See Also
Other getter:
getBIC()
,
getEmpiricTik()
,
getMixtureDensity()
,
getParam()
,
getPartition()
,
getType()
Examples
if (requireNamespace("RMixtCompIO", quietly = TRUE)) {
dataLearn <- list(
var1 = as.character(c(rnorm(50, -2, 0.8), rnorm(50, 2, 0.8))),
var2 = as.character(c(rnorm(50, 2), rpois(50, 8)))
)
# add missing values
dataLearn$var1[12] <- "?"
dataLearn$var2[72] <- "?"
model <- list(
var1 = list(type = "Gaussian", paramStr = ""),
var2 = list(type = "Poisson", paramStr = "")
)
algo <- list(
nClass = 2,
nInd = 100,
nbBurnInIter = 100,
nbIter = 100,
nbGibbsBurnInIter = 100,
nbGibbsIter = 100,
nInitPerClass = 3,
nSemTry = 20,
confidenceLevel = 0.95,
ratioStableCriterion = 0.95,
nStableCriterion = 10,
mode = "learn"
)
resLearn <- RMixtCompIO::rmcMultiRun(algo, dataLearn, model, nRun = 3)
# get completedData
completedData <- getCompletedData(resLearn)
completedData2 <- getCompletedData(resLearn, var = "var1")
}
[Package RMixtCompUtilities version 4.1.6 Index]