computeDiscrimPowerVar {RMixtCompUtilities} | R Documentation |
Discriminative power
Description
Compute the discriminative power of each variable or class
Usage
computeDiscrimPowerVar(outMixtComp, class = NULL)
computeDiscrimPowerClass(outMixtComp)
Arguments
outMixtComp |
object of class MixtCompLearn or MixtComp obtained using |
class |
NULL or a number of classes. If NULL, return the discriminative power of variables globally otherwise return the discriminative power of variables in the given class |
Details
The discriminative power of variable j is defined by 1 - C(j)
C(j)= - \sum_{k=1}^K sum_{i=1}^n P(Z_i=k|x_{ij}) \log(P(Z_i=k|x_{ij})) / (n*\log(K))
A high value (close to one) means that the variable is highly discriminating. A low value (close to zero) means that the variable is poorly discriminating.
The discriminative power of variable j in class k is defined by 1 - C(j)
C(j)= - sum_{i=1}^n (P(Z_i!=k|x_{ij}) \log(P(Z_i!=k|x_{ij})) + P(Z_i=k|x_{ij}) \log(P(Z_i=k|x_{ij}))) / (n*\log(2))
The discriminative power of class k is defined by 1 - D(k)
D(k) = -\sum_{i=1}^n P(Z_i=k|x_i) \log(P(Z_i=k|x_i)) / (n*\exp(-1))
Value
the discriminative power
Author(s)
Matthieu Marbac
See Also
plotDiscrimClass
plotDiscrimVar
Examples
if (requireNamespace("RMixtCompIO", quietly = TRUE)) {
dataLearn <- list(
var1 = as.character(c(rnorm(50, -2, 0.8), rnorm(50, 2, 0.8))),
var2 = as.character(c(rnorm(50, 2), rpois(50, 8)))
)
model <- list(
var1 = list(type = "Gaussian", paramStr = ""),
var2 = list(type = "Poisson", paramStr = "")
)
algo <- list(
nClass = 2,
nInd = 100,
nbBurnInIter = 100,
nbIter = 100,
nbGibbsBurnInIter = 100,
nbGibbsIter = 100,
nInitPerClass = 3,
nSemTry = 20,
confidenceLevel = 0.95,
ratioStableCriterion = 0.95,
nStableCriterion = 10,
mode = "learn"
)
resLearn <-RMixtCompIO::rmcMultiRun(algo, dataLearn, model, nRun = 3)
discVar <- computeDiscrimPowerVar(resLearn)
discVarInClass1 <- computeDiscrimPowerVar(resLearn, class = 1)
discClass <- computeDiscrimPowerClass(resLearn)
# graphic representation of discriminant variables
plotDiscrimVar(resLearn)
# graphic representation of discriminant classes
plotDiscrimClass(resLearn)
}