WishartMax {RMTstat} | R Documentation |
The White Wishart Maximum Eigenvalue Distributions
Description
Density, distribution function, quantile function, and random
generation for the maximum eigenvalue from a white Wishart matrix
(sample covariance matrix) with ndf
degrees of freedom,
pdim
dimensions, population variance var
, and order
parameter beta
.
Usage
dWishartMax(x, ndf, pdim, var=1, beta=1, log = FALSE)
pWishartMax(q, ndf, pdim, var=1, beta=1, lower.tail = TRUE, log.p = FALSE)
qWishartMax(p, ndf, pdim, var=1, beta=1, lower.tail = TRUE, log.p = FALSE)
rWishartMax(n, ndf, pdim, var=1, beta=1)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
ndf |
the number of degrees of freedom for the Wishart matrix |
pdim |
the number of dimensions (variables) for the Wishart matrix |
var |
the population variance. |
beta |
the order parameter (1 or 2). |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
Details
If beta
is not specified, it assumes the default value of 1
.
Likewise, var
assumes a default of 1
.
A white Wishart matrix is equal in distribution to (1/n) X' X
,
where X
is an n\times p
matrix with elements i.i.d. Normal
with mean zero and variance var
. These functions give the limiting
distribution of the largest eigenvalue from the such a matrix when
ndf
and pdim
both tend to infinity.
Supported values for beta
are 1
for real data and
and 2
for complex data.
Value
dWishartMax
gives the density,
pWishartMax
gives the distribution function,
qWishartMax
gives the quantile function, and
rWishartMax
generates random deviates.
Author(s)
Iain M. Johnstone, Zongming Ma, Patrick O. Perry and Morteza Shahram
Source
The functions are calculated by applying the appropriate centering and scaling (determined by WishartMaxPar), and then calling the corresponding functions for the TracyWidom distribution.
References
Johansson, K. (2000). Shape fluctuations and random matrices. Communications in Mathematical Physics. 209 437–476.
Johnstone, I.M. (2001). On the ditribution of the largest eigenvalue in principal component analysis. Annals of Statistics. 29 295–327.
See Also
WishartMaxPar, WishartSpike, TracyWidom