calcError {RMTL} | R Documentation |
Calculate the prediction error
Description
Calculate the averaged prediction error across tasks. For classification problem, the miss-classification rate is returned, and for regression problem, the mean square error(MSE) is returned.
Usage
calcError(m, newX = NULL, newY = NULL)
Arguments
m |
A MTL model |
newX |
The feature matrices of new individuals |
newY |
The responses of new individuals |
Value
The averaged prediction error
Examples
#create example data
data<-Create_simulated_data(Regularization="L21", type="Regression")
#train a model
model<-MTL(data$X, data$Y, type="Regression", Regularization="L21",
Lam1=0.1, Lam2=0, opts=list(init=0, tol=10^-6, maxIter=1500))
#calculate the training error
calcError(model, newX=data$X, newY=data$Y)
#calculate the test error
calcError(model, newX=data$tX, newY=data$tY)
[Package RMTL version 0.9.9 Index]