MTL {RMTL} | R Documentation |
Train a multi-task learning model.
Description
Train a multi-task learning model.
Usage
MTL(
X,
Y,
type = "Classification",
Regularization = "L21",
Lam1 = 0.1,
Lam1_seq = NULL,
Lam2 = 0,
opts = list(init = 0, tol = 10^-3, maxIter = 1000),
G = NULL,
k = 2
)
Arguments
X |
A set of feature matrices |
Y |
A set of responses, could be binary (classification
problem) or continues (regression problem). The valid
value of binary outcome |
type |
The type of problem, must be |
Regularization |
The type of MTL algorithm (cross-task regularizer). The value must be
one of { |
Lam1 |
A positive constant |
Lam1_seq |
A positive sequence of |
Lam2 |
A non-negative constant |
opts |
Options of the optimization procedure. One can set the
initial search point, the tolerance and the maximized number of
iterations using this parameter. The default value is
|
G |
A matrix to encode the network information. This parameter
is only used in the MTL with graph structure ( |
k |
A positive number to modulate the structure of clusters
with the default of 2. This parameter is only used in MTL with
clustering structure ( |
Value
The trained model including the coefficient matrix W
and intercepts C
and related meta information
Examples
#create the example data
data<-Create_simulated_data(Regularization="L21", type="Regression")
#train a MTL model
#cold-start
model<-MTL(data$X, data$Y, type="Regression", Regularization="L21",
Lam1=0.1, Lam2=0, opts=list(init=0, tol=10^-6, maxIter=1500))
#warm-start
model<-MTL(data$X, data$Y, type="Regression", Regularization="L21",
Lam1=0.1, Lam1_seq=10^seq(1,-4, -1), Lam2=0, opts=list(init=0, tol=10^-6, maxIter=1500))
#meta-information
str(model)
#plot the historical objective values
plotObj(model)